#include "models.h" llm_build_openai_moe_iswa::llm_build_openai_moe_iswa(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { ggml_tensor * cur; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); // inp_pos - contains the positions ggml_tensor * inp_pos = build_inp_pos(); auto * inp_attn = build_attn_inp_kv_iswa(); ggml_tensor * inp_out_ids = build_inp_out_ids(); for (int il = 0; il < n_layer; ++il) { ggml_tensor * inpSA = inpL; // norm cur = build_norm(inpL, model.layers[il].attn_norm, nullptr, LLM_NORM_RMS, il); cb(cur, "attn_norm", il); // self-attention { // compute Q and K and RoPE them ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); cb(Qcur, "Qcur", il); if (model.layers[il].bq) { Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); cb(Qcur, "Qcur", il); } ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); cb(Kcur, "Kcur", il); if (model.layers[il].bk) { Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); cb(Kcur, "Kcur", il); } ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); cb(Vcur, "Vcur", il); if (model.layers[il].bv) { Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); cb(Vcur, "Vcur", il); } Qcur = ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens); Vcur = ggml_reshape_3d(ctx0, Vcur, n_rot, n_head_kv, n_tokens); Qcur = ggml_rope_ext( ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); Kcur = ggml_rope_ext( ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); cur = build_attn(inp_attn, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, model.layers[il].attn_sinks, nullptr, 1.0f/sqrtf(float(n_rot)), il); cb(cur, "attn_out", il); } if (il == n_layer - 1) { // skip computing output for unused tokens cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); } ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); cb(ffn_inp, "ffn_inp", il); cur = ffn_inp; cur = build_norm(cur, model.layers[il].attn_post_norm, nullptr, LLM_NORM_RMS, il); cb(cur, "attn_post_norm", il); // MoE branch cur = build_moe_ffn(cur, model.layers[il].ffn_gate_inp, model.layers[il].ffn_gate_inp_b, model.layers[il].ffn_up_exps, model.layers[il].ffn_up_exps_b, model.layers[il].ffn_gate_exps, model.layers[il].ffn_gate_exps_b, model.layers[il].ffn_down_exps, model.layers[il].ffn_down_exps_b, nullptr, n_expert, n_expert_used, LLM_FFN_SWIGLU_OAI_MOE, false, false, 0.0, LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX_WEIGHT, il); cb(cur, "ffn_moe_out", il); cur = ggml_add(ctx0, cur, ffn_inp); cur = build_cvec(cur, il); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1); cb(cur, "result_norm", -1); res->t_embd = cur; // lm_head cur = build_lora_mm(model.output, cur); cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); }