#include "models.h" llm_build_rwkv6::llm_build_rwkv6(const llama_model & model, const llm_graph_params & params) : llm_build_rwkv6_base(model, params) { GGML_ASSERT(hparams.token_shift_count == 2); ggml_tensor * cur; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); inpL = build_norm(inpL, model.tok_norm, model.tok_norm_b, LLM_NORM, -1); auto * rs_inp = build_rs_inp(); const auto n_embd = hparams.n_embd; const auto n_seq_tokens = ubatch.n_seq_tokens; const auto n_seqs = ubatch.n_seqs; ggml_tensor * inp_out_ids = build_inp_out_ids(); for (int il = 0; il < n_layer; ++il) { const llama_layer * layer = &model.layers[il]; inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs); ggml_tensor * token_shift = build_rwkv_token_shift_load(rs_inp, ubatch, il); ggml_tensor * att_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], 0); ggml_tensor * ffn_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], n_embd * ggml_element_size(token_shift)); ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM, il); cb(att_norm, "attn_norm", il); ggml_tensor * x_prev = ggml_concat( ctx0, att_shift, ggml_view_3d(ctx0, att_norm, n_embd, n_seq_tokens - 1, n_seqs, att_norm->nb[1], att_norm->nb[2], 0), 1); cur = build_rwkv6_time_mix(rs_inp, att_norm, x_prev, ubatch, il); ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL); cb(ffn_inp, "ffn_inp", il); ggml_tensor * ffn_norm = build_norm(ffn_inp, layer->attn_norm_2, layer->attn_norm_2_b, LLM_NORM, il); cb(ffn_norm, "ffn_norm", il); x_prev = ggml_concat( ctx0, ffn_shift, ggml_view_3d(ctx0, ffn_norm, n_embd, n_seq_tokens - 1, n_seqs, ffn_norm->nb[1], ffn_norm->nb[2], 0), 1); token_shift = ggml_concat(ctx0, ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens - 1) * n_embd * ggml_element_size(att_norm)), ggml_view_3d(ctx0, ffn_norm, n_embd, 1, n_seqs, ffn_norm->nb[1], ffn_norm->nb[2], (n_seq_tokens - 1) * n_embd * ggml_element_size(ffn_norm)), 1); ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il)); ffn_inp = ggml_reshape_2d(ctx0, ffn_inp, n_embd, n_tokens); ffn_norm = ggml_reshape_2d(ctx0, ffn_norm, n_embd, n_tokens); x_prev = ggml_reshape_2d(ctx0, x_prev, n_embd, n_tokens); cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens); if (il == n_layer - 1 && inp_out_ids) { ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids); ffn_norm = ggml_get_rows(ctx0, ffn_norm, inp_out_ids); x_prev = ggml_get_rows(ctx0, x_prev, inp_out_ids); cur = ggml_get_rows(ctx0, cur, inp_out_ids); } cur = build_rwkv6_channel_mix(layer, ffn_norm, x_prev, LLM_ARCH_RWKV6); cur = ggml_add(ctx0, cur, ffn_inp); if (hparams.rescale_every_n_layers != 0 && (il + 1) % hparams.rescale_every_n_layers == 0) { cur = ggml_scale(ctx0, cur, 0.5F); } cur = build_cvec(cur, il); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM, -1); cb(cur, "result_norm", -1); res->t_embd = cur; cur = build_lora_mm(model.output, cur); cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); }