#include "models.h" template llm_build_smallthinker::llm_build_smallthinker(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params){ const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); GGML_ASSERT(n_embd_head == hparams.n_rot); ggml_tensor * cur; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); // inp_pos - contains the positions ggml_tensor * inp_pos = build_inp_pos(); using inp_attn_type = std::conditional_t; inp_attn_type * inp_attn = nullptr; if constexpr (iswa) { inp_attn = build_attn_inp_kv_iswa(); } else { inp_attn = build_attn_inp_kv(); } ggml_tensor * inp_out_ids = build_inp_out_ids(); for (int il = 0; il < n_layer; ++il) { ggml_tensor * inpSA = inpL; ggml_tensor * probs = nullptr; probs = build_lora_mm(model.layers[il].ffn_gate_inp, inpL); // [n_expert, n_tokens] cb(probs, "ffn_moe_logits", il); // norm cur = build_norm(inpL,model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "attn_norm", il); // self_attention { // compute Q and K and RoPE them struct ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); cb(Qcur, "Qcur", il); struct ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); cb(Kcur, "Kcur", il); struct ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); cb(Vcur, "Vcur", il); Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); if (hparams.n_no_rope_layer_step == n_layer || il % hparams.n_no_rope_layer_step != 0) { Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow); Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow); } cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cur = build_attn(inp_attn, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il); } if (il == n_layer - 1 && inp_out_ids) { cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); probs = ggml_get_rows(ctx0, probs, inp_out_ids); } ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); cb(ffn_inp, "ffn_inp", il); // MoE branch cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "ffn_norm", il); ggml_tensor * ffn_out = build_moe_ffn(cur, nullptr, model.layers[il].ffn_up_exps, model.layers[il].ffn_gate_exps, model.layers[il].ffn_down_exps, nullptr, n_expert, n_expert_used, LLM_FFN_RELU, true, false, 0.0, static_cast(hparams.expert_gating_func), il, probs); cb(ffn_out, "ffn_out", il); cur = ffn_out; cur = ggml_add(ctx0, cur, ffn_inp); cur = build_cvec(cur, il); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1); cb(cur, "result_norm", -1); res->t_embd = cur; // lm_head cur = build_lora_mm(model.output, cur); cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); } // Explicit template instantiations template struct llm_build_smallthinker; template struct llm_build_smallthinker;