#include "models.h" llm_build_t5_dec::llm_build_t5_dec(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; //const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); ggml_tensor * cur; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); ggml_tensor * embd_enc = build_inp_cross_embd(); ggml_tensor * pos_bucket_dec = build_inp_pos_bucket_dec(); const int64_t n_outputs_enc = embd_enc->ne[1]; auto * inp_attn_self = build_attn_inp_kv(); auto * inp_attn_cross = build_attn_inp_cross(); ggml_tensor * inp_out_ids = build_inp_out_ids(); const int64_t dec_n_layer = hparams.dec_n_layer; for (int il = 0; il < dec_n_layer; ++il) { ggml_tensor * inpSA = inpL; // norm cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "attn_norm", il); // self-attention { ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); cb(Qcur, "Qcur", il); ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); cb(Kcur, "Kcur", il); ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); cb(Vcur, "Vcur", il); Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b ? model.layers[il].attn_rel_b : model.layers[0].attn_rel_b; ggml_tensor * kq_b = build_pos_bias(pos_bucket_dec, attn_rel_b); cur = build_attn(inp_attn_self, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, kq_b, nullptr, nullptr, 1.0f, il); cb(cur, "kqv_out", il); } cur = ggml_add(ctx0, cur, inpSA); cb(cur, "cross_inp", il); ggml_tensor * inpCA = cur; // norm cur = build_norm(cur, model.layers[il].attn_norm_cross, NULL, LLM_NORM_RMS, il); cb(cur, "attn_norm_cross", il); // cross-attention { ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq_cross, cur); cb(Qcur, "Qcur", il); ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk_cross, embd_enc); cb(Kcur, "Kcur", il); ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv_cross, embd_enc); cb(Vcur, "Vcur", il); Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_outputs_enc); Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_outputs_enc); cur = build_attn(inp_attn_cross, model.layers[il].wo_cross, nullptr, Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f, il); cb(cur, "kqv_out", il); //ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3); //ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3)); //ggml_tensor * kq = ggml_mul_mat(ctx0, k, q); //cb(kq, "kq", il); //kq = ggml_soft_max_ext(ctx0, kq, KQ_mask_cross, 1.0f, hparams.f_max_alibi_bias); //cb(kq, "kq_soft_max_ext", il); //ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_outputs_enc))); //cb(v, "v", il); //ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_outputs_enc, n_embd_head, n_head_kv), kq); //cb(kqv, "kqv", il); //ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3); //cb(kqv_merged, "kqv_merged", il); //cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens); //cb(cur, "kqv_merged_cont", il); //ggml_build_forward_expand(gf, cur); //cur = build_lora_mm(model.layers[il].wo_cross, cur); //cb(cur, "kqv_out", il); } if (il == dec_n_layer - 1 && inp_out_ids) { cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpCA = ggml_get_rows(ctx0, inpCA, inp_out_ids); } ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpCA); cb(ffn_inp, "ffn_inp", il); // feed-forward network { cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "ffn_norm", il); // T5 uses relu, flan-T5 uses gelu-gated cur = build_ffn(cur, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate, NULL, NULL, model.layers[il].ffn_down, NULL, NULL, NULL, model.layers[il].ffn_gate ? LLM_FFN_GELU : LLM_FFN_RELU, model.layers[il].ffn_gate ? LLM_FFN_PAR : LLM_FFN_SEQ, il); cb(cur, "ffn_out", il); } cur = ggml_add(ctx0, cur, ffn_inp); cb(cur, "ffn_out", il); cur = build_cvec(cur, il); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cb(cur, "result_embd", -1); cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1); cb(cur, "result_norm", -1); res->t_embd = cur; // lm_head cur = build_lora_mm(model.output, cur); cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); }