136 lines
6.7 KiB
C++
136 lines
6.7 KiB
C++
#include "models.h"
|
|
|
|
llm_build_rwkv7_base::llm_build_rwkv7_base(const llama_model & model, const llm_graph_params & params) :
|
|
llm_graph_context(params),
|
|
model(model) {}
|
|
|
|
ggml_tensor * llm_build_rwkv7_base::build_rwkv7_channel_mix(const llama_layer * layer,
|
|
ggml_tensor * cur,
|
|
ggml_tensor * x_prev,
|
|
llm_arch arch) const {
|
|
ggml_tensor * sx = ggml_sub(ctx0, x_prev, cur);
|
|
switch (arch) {
|
|
case LLM_ARCH_RWKV7:
|
|
{
|
|
ggml_tensor * xk = ggml_add(ctx0, ggml_mul(ctx0, sx, layer->channel_mix_lerp_k), cur);
|
|
|
|
ggml_tensor * k = ggml_sqr(ctx0, ggml_relu(ctx0, build_lora_mm(layer->channel_mix_key, xk)));
|
|
|
|
cur = build_lora_mm(layer->channel_mix_value, k);
|
|
}
|
|
break;
|
|
default:
|
|
GGML_ABORT("fatal error");
|
|
}
|
|
return cur;
|
|
}
|
|
|
|
ggml_tensor * llm_build_rwkv7_base::build_rwkv7_time_mix(llm_graph_input_rs * inp,
|
|
ggml_tensor * cur,
|
|
ggml_tensor * x_prev,
|
|
ggml_tensor *& first_layer_value,
|
|
const llama_ubatch & ubatch,
|
|
int il) const {
|
|
const auto * mctx_cur = static_cast<const llama_memory_recurrent_context *>(mctx);
|
|
|
|
const auto n_tokens = ubatch.n_tokens;
|
|
const auto n_seqs = ubatch.n_seqs;
|
|
const auto n_embd = hparams.n_embd;
|
|
const auto head_size = hparams.wkv_head_size;
|
|
const auto head_count = n_embd / head_size;
|
|
const auto n_seq_tokens = ubatch.n_seq_tokens;
|
|
|
|
const auto kv_head = mctx_cur->get_head();
|
|
|
|
const auto & layer = model.layers[il];
|
|
|
|
bool has_gating = layer.time_mix_g1 && layer.time_mix_g2;
|
|
|
|
ggml_tensor * sx = ggml_sub(ctx0, x_prev, cur);
|
|
ggml_tensor * dummy = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_embd, n_seq_tokens, n_seqs, has_gating ? 6 : 5);
|
|
sx = ggml_repeat(ctx0, sx, dummy);
|
|
|
|
ggml_tensor * xxx = ggml_add(ctx0, ggml_mul(ctx0, sx, layer.time_mix_lerp_fused), cur);
|
|
|
|
ggml_tensor * xr = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], 0);
|
|
ggml_tensor * xw = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * sizeof(float));
|
|
ggml_tensor * xk = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 2 * sizeof(float));
|
|
ggml_tensor * xv = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 3 * sizeof(float));
|
|
ggml_tensor * xa = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 4 * sizeof(float));
|
|
ggml_tensor * xg =
|
|
has_gating ? ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 5 * sizeof(float)) :
|
|
nullptr;
|
|
|
|
ggml_tensor * r = build_lora_mm(layer.time_mix_receptance, xr);
|
|
ggml_tensor * w = ggml_add(
|
|
ctx0, ggml_mul_mat(ctx0, layer.time_mix_w2, ggml_tanh(ctx0, ggml_mul_mat(ctx0, layer.time_mix_w1, xw))),
|
|
layer.time_mix_w0);
|
|
w = ggml_exp(ctx0, ggml_scale(ctx0, ggml_sigmoid(ctx0, w), -0.606531));
|
|
|
|
ggml_tensor * k = build_lora_mm(layer.time_mix_key, xk);
|
|
ggml_tensor * v = build_lora_mm(layer.time_mix_value, xv);
|
|
if (first_layer_value == nullptr) {
|
|
first_layer_value = v;
|
|
} else {
|
|
// Add the first layer value as a residual connection.
|
|
v = ggml_add(ctx0, v,
|
|
ggml_mul(ctx0, ggml_sub(ctx0, first_layer_value, v),
|
|
ggml_sigmoid(ctx0, ggml_add(ctx0,
|
|
ggml_mul_mat(ctx0, layer.time_mix_v2,
|
|
ggml_mul_mat(ctx0, layer.time_mix_v1, xv)),
|
|
layer.time_mix_v0))));
|
|
}
|
|
ggml_tensor * g = nullptr;
|
|
if (layer.time_mix_g1 && layer.time_mix_g2) {
|
|
g = ggml_mul_mat(ctx0, layer.time_mix_g2, ggml_sigmoid(ctx0, ggml_mul_mat(ctx0, layer.time_mix_g1, xg)));
|
|
}
|
|
ggml_tensor * a = ggml_sigmoid(
|
|
ctx0, ggml_add(ctx0, ggml_mul_mat(ctx0, layer.time_mix_a2, ggml_mul_mat(ctx0, layer.time_mix_a1, xa)),
|
|
layer.time_mix_a0));
|
|
|
|
ggml_tensor * kk = ggml_reshape_3d(ctx0, ggml_mul(ctx0, k, layer.time_mix_k_k), head_size, head_count, n_tokens);
|
|
kk = ggml_l2_norm(ctx0, kk, 1e-12);
|
|
|
|
ggml_tensor * ka = ggml_mul(ctx0, k, layer.time_mix_k_a);
|
|
k = ggml_add(ctx0, k, ggml_sub(ctx0, ggml_mul(ctx0, a, ka), ka));
|
|
|
|
r = ggml_reshape_3d(ctx0, r, head_size, head_count, n_tokens);
|
|
w = ggml_reshape_3d(ctx0, w, head_size, head_count, n_tokens);
|
|
k = ggml_reshape_3d(ctx0, k, head_size, head_count, n_tokens);
|
|
v = ggml_reshape_3d(ctx0, v, head_size, head_count, n_tokens);
|
|
a = ggml_reshape_3d(ctx0, a, head_size, head_count, n_tokens);
|
|
|
|
ggml_tensor * wkv_state = build_rs(inp, mctx_cur->get_s_l(il), hparams.n_embd_s(), n_seqs);
|
|
|
|
ggml_tensor * wkv_output = ggml_rwkv_wkv7(ctx0, r, w, k, v, ggml_neg(ctx0, kk), ggml_mul(ctx0, kk, a), wkv_state);
|
|
cur = ggml_view_1d(ctx0, wkv_output, n_embd * n_tokens, 0);
|
|
wkv_state = ggml_view_1d(ctx0, wkv_output, n_embd * head_size * n_seqs, n_embd * n_tokens * sizeof(float));
|
|
|
|
ggml_build_forward_expand(
|
|
gf, ggml_cpy(ctx0, wkv_state,
|
|
ggml_view_1d(ctx0, mctx_cur->get_s_l(il), hparams.n_embd_s() * n_seqs,
|
|
hparams.n_embd_s() * kv_head * ggml_element_size(mctx_cur->get_s_l(il)))));
|
|
|
|
if (layer.time_mix_ln && layer.time_mix_ln_b) {
|
|
// group norm with head_count groups
|
|
cur = ggml_reshape_3d(ctx0, cur, n_embd / head_count, head_count, n_tokens);
|
|
cur = ggml_norm(ctx0, cur, 64e-5f);
|
|
|
|
// Convert back to regular vectors.
|
|
cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
|
|
cur = ggml_add(ctx0, ggml_mul(ctx0, cur, layer.time_mix_ln), layer.time_mix_ln_b);
|
|
} else {
|
|
cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
|
|
}
|
|
ggml_tensor * rk = ggml_sum_rows(
|
|
ctx0, ggml_mul(ctx0, ggml_mul(ctx0, k, r), ggml_reshape_2d(ctx0, layer.time_mix_r_k, head_size, head_count)));
|
|
cur = ggml_add(ctx0, cur, ggml_reshape_2d(ctx0, ggml_mul(ctx0, v, rk), n_embd, n_tokens));
|
|
|
|
if (has_gating) {
|
|
cur = ggml_mul(ctx0, cur, g);
|
|
}
|
|
cur = build_lora_mm(layer.time_mix_output, cur);
|
|
|
|
return ggml_reshape_3d(ctx0, cur, n_embd, n_seq_tokens, n_seqs);
|
|
}
|