176 lines
7.7 KiB
C++
176 lines
7.7 KiB
C++
#include "models.h"
|
|
|
|
#include "../llama-memory-hybrid.h"
|
|
|
|
|
|
llm_build_lfm2::llm_build_lfm2(const llama_model & model, const llm_graph_params & params) :
|
|
llm_graph_context(params),
|
|
model(model) {
|
|
ggml_tensor * cur = build_inp_embd(model.tok_embd);
|
|
cb(cur, "model.embed_tokens", -1);
|
|
|
|
ggml_build_forward_expand(gf, cur);
|
|
|
|
ggml_tensor * inp_pos = build_inp_pos();
|
|
auto * inp_hybrid = build_inp_mem_hybrid();
|
|
ggml_tensor * inp_out_ids = build_inp_out_ids();
|
|
|
|
for (int il = 0; il < n_layer; ++il) {
|
|
const bool is_moe_layer = il >= static_cast<int>(hparams.n_layer_dense_lead);
|
|
|
|
auto * prev_cur = cur;
|
|
cur = build_norm(cur, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
|
|
cb(cur, "model.layers.{}.operator_norm", il);
|
|
|
|
cur = hparams.is_recurrent(il) ? build_shortconv_block(cur, inp_hybrid->get_recr(), il) :
|
|
build_attn_block(cur, inp_pos, inp_hybrid->get_attn(), il);
|
|
|
|
if (il == n_layer - 1 && inp_out_ids) {
|
|
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
|
prev_cur = ggml_get_rows(ctx0, prev_cur, inp_out_ids);
|
|
}
|
|
|
|
cur = ggml_add(ctx0, prev_cur, cur);
|
|
|
|
auto * ffn_norm_out = build_norm(cur, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
|
|
cb(ffn_norm_out, "model.layers.{}.ffn_norm", il);
|
|
|
|
ggml_tensor * ffn_out =
|
|
is_moe_layer ? build_moe_feed_forward(ffn_norm_out, il) : build_dense_feed_forward(ffn_norm_out, il);
|
|
cb(ffn_norm_out, "model.layers.{}.ffn_out", il);
|
|
|
|
cur = ggml_add(ctx0, cur, ffn_out);
|
|
}
|
|
|
|
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
|
|
cb(cur, "result_norm", -1);
|
|
res->t_embd = cur;
|
|
|
|
cur = build_lora_mm(model.output, cur);
|
|
cb(cur, "result_output", -1);
|
|
|
|
res->t_logits = cur;
|
|
|
|
ggml_build_forward_expand(gf, cur);
|
|
}
|
|
|
|
ggml_tensor * llm_build_lfm2::build_moe_feed_forward(ggml_tensor * cur, int il) const {
|
|
return build_moe_ffn(cur,
|
|
model.layers[il].ffn_gate_inp, model.layers[il].ffn_up_exps,
|
|
model.layers[il].ffn_gate_exps, model.layers[il].ffn_down_exps,
|
|
model.layers[il].ffn_exp_probs_b, n_expert, n_expert_used, LLM_FFN_SILU, true, false, 0.0,
|
|
static_cast<llama_expert_gating_func_type>(hparams.expert_gating_func), il);
|
|
}
|
|
|
|
ggml_tensor * llm_build_lfm2::build_dense_feed_forward(ggml_tensor * cur, int il) const {
|
|
GGML_ASSERT(!model.layers[il].ffn_up_b);
|
|
GGML_ASSERT(!model.layers[il].ffn_gate_b);
|
|
GGML_ASSERT(!model.layers[il].ffn_down_b);
|
|
return build_ffn(cur,
|
|
model.layers[il].ffn_up, NULL, NULL,
|
|
model.layers[il].ffn_gate, NULL, NULL,
|
|
model.layers[il].ffn_down, NULL, NULL,
|
|
NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
|
|
}
|
|
|
|
ggml_tensor * llm_build_lfm2::build_attn_block(ggml_tensor * cur,
|
|
ggml_tensor * inp_pos,
|
|
llm_graph_input_attn_kv * inp_attn,
|
|
int il) const {
|
|
GGML_ASSERT(hparams.n_embd_v_gqa(il) == hparams.n_embd_k_gqa(il));
|
|
const auto n_embd_head = hparams.n_embd_head_v;
|
|
const auto n_head_kv = hparams.n_head_kv(il);
|
|
|
|
auto * q = build_lora_mm(model.layers[il].wq, cur);
|
|
cb(q, "model.layers.{}.self_attn.q_proj", il);
|
|
auto * k = build_lora_mm(model.layers[il].wk, cur);
|
|
cb(k, "model.layers.{}.self_attn.k_proj", il);
|
|
auto * v = build_lora_mm(model.layers[il].wv, cur);
|
|
cb(v, "model.layers.{}.self_attn.v_proj", il);
|
|
|
|
q = ggml_reshape_3d(ctx0, q, n_embd_head, n_head, n_tokens);
|
|
k = ggml_reshape_3d(ctx0, k, n_embd_head, n_head_kv, n_tokens);
|
|
v = ggml_reshape_3d(ctx0, v, n_embd_head, n_head_kv, n_tokens);
|
|
|
|
// qk norm
|
|
q = build_norm(q, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
|
|
cb(q, "model.layers.{}.self_attn.q_layernorm", il);
|
|
k = build_norm(k, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
|
|
cb(k, "model.layers.{}.self_attn.k_layernorm", il);
|
|
|
|
// RoPE
|
|
q = ggml_rope_ext(ctx0, q, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor,
|
|
attn_factor, beta_fast, beta_slow);
|
|
k = ggml_rope_ext(ctx0, k, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor,
|
|
attn_factor, beta_fast, beta_slow);
|
|
|
|
cur = build_attn(inp_attn,
|
|
model.layers[il].wo, NULL,
|
|
q, k, v, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
|
|
|
|
cb(cur, "model.layers.{}.self_attn.out_proj", il);
|
|
|
|
return cur;
|
|
}
|
|
|
|
ggml_tensor * llm_build_lfm2::build_shortconv_block(ggml_tensor * cur, llm_graph_input_rs * inp_recr, int il) {
|
|
const auto * mctx_cur = static_cast<const llama_memory_hybrid_context *>(mctx)->get_recr();
|
|
const uint32_t kv_head = mctx_cur->get_head();
|
|
const int64_t n_seq_tokens = ubatch.n_seq_tokens;
|
|
const int64_t n_seqs = ubatch.n_seqs;
|
|
GGML_ASSERT(n_seqs != 0);
|
|
GGML_ASSERT(ubatch.equal_seqs());
|
|
GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs);
|
|
|
|
GGML_ASSERT(hparams.n_shortconv_l_cache > 1);
|
|
const uint32_t d_conv = hparams.n_shortconv_l_cache - 1;
|
|
|
|
// {n_embd, n_tokens} => {n_embd, n_seq_tokens, n_seqs}
|
|
cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], n_seq_tokens, n_seqs);
|
|
|
|
auto * bcx = build_lora_mm(model.layers[il].shortconv.in_proj, cur);
|
|
cb(bcx, "model.layers.{}.conv.in_proj", il);
|
|
|
|
constexpr auto n_chunks = 3;
|
|
GGML_ASSERT(bcx->ne[0] % n_chunks == 0);
|
|
const auto chunk_size = bcx->ne[0] / n_chunks;
|
|
auto * b = ggml_view_3d(ctx0, bcx, chunk_size, bcx->ne[1], bcx->ne[2], bcx->nb[1], bcx->nb[2],
|
|
0 * chunk_size * ggml_element_size(bcx));
|
|
auto * c = ggml_view_3d(ctx0, bcx, chunk_size, bcx->ne[1], bcx->ne[2], bcx->nb[1], bcx->nb[2],
|
|
1 * chunk_size * ggml_element_size(bcx));
|
|
auto * x = ggml_view_3d(ctx0, bcx, chunk_size, bcx->ne[1], bcx->ne[2], bcx->nb[1], bcx->nb[2],
|
|
2 * chunk_size * ggml_element_size(bcx));
|
|
|
|
auto * bx = ggml_transpose(ctx0, ggml_mul(ctx0, b, x));
|
|
|
|
// read conv state
|
|
auto * conv_state = mctx_cur->get_r_l(il);
|
|
auto * conv_rs = build_rs(inp_recr, conv_state, hparams.n_embd_r(), n_seqs);
|
|
auto * conv = ggml_reshape_3d(ctx0, conv_rs, d_conv, hparams.n_embd, n_seqs);
|
|
|
|
bx = ggml_concat(ctx0, conv, bx, 0);
|
|
GGML_ASSERT(bx->ne[0] > conv->ne[0]);
|
|
|
|
// last d_conv columns is a new conv state
|
|
auto * new_conv = ggml_view_3d(ctx0, bx, conv->ne[0], bx->ne[1], bx->ne[2], bx->nb[1], bx->nb[2],
|
|
(bx->ne[0] - conv->ne[0]) * ggml_element_size(bx));
|
|
GGML_ASSERT(ggml_are_same_shape(conv, new_conv));
|
|
|
|
// write new conv conv state
|
|
ggml_build_forward_expand(gf, ggml_cpy(ctx0, new_conv,
|
|
ggml_view_1d(ctx0, conv_state, ggml_nelements(new_conv),
|
|
kv_head * d_conv * n_embd * ggml_element_size(new_conv))));
|
|
|
|
auto * conv_kernel = model.layers[il].shortconv.conv;
|
|
auto * conv_out = ggml_ssm_conv(ctx0, bx, conv_kernel);
|
|
cb(conv_out, "model.layers.{}.conv.conv", il);
|
|
|
|
auto * y = ggml_mul(ctx0, c, conv_out);
|
|
y = build_lora_mm(model.layers[il].shortconv.out_proj, y);
|
|
cb(y, "model.layers.{}.conv.out_proj", il);
|
|
// {n_embd, n_seq_tokens, n_seqs} => {n_embd, n_tokens}
|
|
y = ggml_reshape_2d(ctx0, y, y->ne[0], n_seq_tokens * n_seqs);
|
|
|
|
return y;
|
|
}
|