* Add ggml-silero-v6.2.0 to download candidates * Make default VAD model ggml-silero-v6.2.0 * Make VAD model in documentations ggml-silero-v6.2.0 |
||
|---|---|---|
| .. | ||
| normalizers | ||
| .gitignore | ||
| Makefile | ||
| README.md | ||
| eval.mk | ||
| eval.py | ||
| requirements.txt | ||
README.md
whisper.cpp/tests/earnings21
Earnings-21 is a real-world benchmark dataset that contains 39-hours of long-form English speech, sourced from public earning calls.
This directory contains a set of scripts to evaluate the performance of whisper.cpp on Earnings-21 corpus.
Quick Start
-
(Pre-requirement) Compile
whisper-cliand prepare the Whisper model inggmlformat.$ # Execute the commands below in the project root dir. $ cmake -B build $ cmake --build build --config Release $ ./models/download-ggml-model.sh tinyConsult whisper.cpp/README.md for more details.
-
Download the audio files.
$ make get-audio -
Set up the environment to compute WER score.
$ pip install -r requirements.txtFor example, if you use
virtualenv, you can set up it as follows:$ python3 -m venv venv $ . venv/bin/activate $ pip install -r requirements.txt -
Run the benchmark test.
$ make
How-to guides
How to change the inference parameters
Create eval.conf and override variables.
WHISPER_MODEL = large-v3-turbo
WHISPER_FLAGS = --no-prints --threads 8 --language en --output-txt
Check out eval.mk for more details.
How to perform the benchmark test on a 10-hour subset
Earnings-21 provides a small but representative subset (approximately 10-hour audio data) to evaluate ASR systems quickly.
To switch to the subset, create eval.conf and add the following line:
EARNINGS21_EVAL10 = yes
How to run the benchmark test using VAD
First, you need to download a VAD model:
$ # Execute the commands below in the project root dir.
$ ./models/download-vad-model.sh silero-v6.2.0
Create eval.conf with the following content:
WHISPER_FLAGS = --no-prints --language en --output-txt --vad --vad-model ../../models/ggml-silero-v6.2.0.bin