whisper.cpp/tests/earnings21
KITAITI Makoto 27f485a14c
vad : Silero VAD v6.2.0 (#3524)
* Add ggml-silero-v6.2.0 to download candidates

* Make default VAD model ggml-silero-v6.2.0

* Make VAD model in documentations ggml-silero-v6.2.0
2025-11-17 22:26:17 +09:00
..
normalizers tests : add a new benchmark test for long-form audio (#3185) 2025-05-28 07:08:44 +02:00
.gitignore tests : add a new benchmark test for long-form audio (#3185) 2025-05-28 07:08:44 +02:00
Makefile tests : add a new benchmark test for long-form audio (#3185) 2025-05-28 07:08:44 +02:00
README.md vad : Silero VAD v6.2.0 (#3524) 2025-11-17 22:26:17 +09:00
eval.mk tests : add a new benchmark test for long-form audio (#3185) 2025-05-28 07:08:44 +02:00
eval.py tests : add a new benchmark test for long-form audio (#3185) 2025-05-28 07:08:44 +02:00
requirements.txt tests : add a new benchmark test for long-form audio (#3185) 2025-05-28 07:08:44 +02:00

README.md

whisper.cpp/tests/earnings21

Earnings-21 is a real-world benchmark dataset that contains 39-hours of long-form English speech, sourced from public earning calls.

This directory contains a set of scripts to evaluate the performance of whisper.cpp on Earnings-21 corpus.

Quick Start

  1. (Pre-requirement) Compile whisper-cli and prepare the Whisper model in ggml format.

    $ # Execute the commands below in the project root dir.
    $ cmake -B build
    $ cmake --build build --config Release
    $ ./models/download-ggml-model.sh tiny
    

    Consult whisper.cpp/README.md for more details.

  2. Download the audio files.

    $ make get-audio
    
  3. Set up the environment to compute WER score.

    $ pip install -r requirements.txt
    

    For example, if you use virtualenv, you can set up it as follows:

    $ python3 -m venv venv
    $ . venv/bin/activate
    $ pip install -r requirements.txt
    
  4. Run the benchmark test.

    $ make
    

How-to guides

How to change the inference parameters

Create eval.conf and override variables.

WHISPER_MODEL = large-v3-turbo
WHISPER_FLAGS = --no-prints --threads 8 --language en --output-txt

Check out eval.mk for more details.

How to perform the benchmark test on a 10-hour subset

Earnings-21 provides a small but representative subset (approximately 10-hour audio data) to evaluate ASR systems quickly.

To switch to the subset, create eval.conf and add the following line:

EARNINGS21_EVAL10 = yes

How to run the benchmark test using VAD

First, you need to download a VAD model:

$ # Execute the commands below in the project root dir.
$ ./models/download-vad-model.sh silero-v6.2.0

Create eval.conf with the following content:

WHISPER_FLAGS = --no-prints --language en --output-txt --vad --vad-model ../../models/ggml-silero-v6.2.0.bin