xbmc/xbmc-xrandr.c

3568 lines
92 KiB
C

/*
* Copyright © 2001 Keith Packard, member of The XFree86 Project, Inc.
* Copyright © 2002 Hewlett Packard Company, Inc.
* Copyright © 2006 Intel Corporation
*
* Permission to use, copy, modify, distribute, and sell this software and its
* documentation for any purpose is hereby granted without fee, provided that
* the above copyright notice appear in all copies and that both that copyright
* notice and this permission notice appear in supporting documentation, and
* that the name of the copyright holders not be used in advertising or
* publicity pertaining to distribution of the software without specific,
* written prior permission. The copyright holders make no representations
* about the suitability of this software for any purpose. It is provided "as
* is" without express or implied warranty.
*
* THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
* INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
* EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
* CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
* DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THIS SOFTWARE.
*
* Thanks to Jim Gettys who wrote most of the client side code,
* and part of the server code for randr.
*/
#include <math.h>
#include <stdarg.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <X11/Xatom.h>
#include <X11/Xlib.h>
#include <X11/Xlibint.h>
#include <X11/Xproto.h>
#include <X11/extensions/Xrandr.h>
#include <X11/extensions/Xrender.h> /* we share subpixel information */
#include <strings.h>
#ifndef _X_NORETURN
#if defined(__GNUC__) && ((__GNUC__ * 100 + __GNUC_MINOR__) >= 205)
#define _X_NORETURN __attribute((noreturn))
#else
#define _X_NORETURN
#endif
#endif
static char* program_name;
static Display* dpy;
static Window root;
static int screen = -1;
static Bool verbose = False;
static Bool automatic = False;
static Bool properties = False;
static Bool grab_server = True;
static Bool no_primary = False;
static char* direction[5] = {"normal", "left", "inverted", "right", "\n"};
static char* reflections[5] = {"normal", "x", "y", "xy", "\n"};
/* subpixel order */
static char* order[6] = {"unknown", "horizontal rgb", "horizontal bgr",
"vertical rgb", "vertical bgr", "no subpixels"};
static const struct
{
char* string;
unsigned long flag;
} mode_flags[] = {{"+HSync", RR_HSyncPositive}, {"-HSync", RR_HSyncNegative},
{"+VSync", RR_VSyncPositive}, {"-VSync", RR_VSyncNegative},
{"Interlace", RR_Interlace}, {"DoubleScan", RR_DoubleScan},
{"CSync", RR_CSync}, {"+CSync", RR_CSyncPositive},
{"-CSync", RR_CSyncNegative}, {NULL, 0}};
static void _X_NORETURN usage(void)
{
fprintf(stderr, "usage: %s [options]\n", program_name);
fprintf(stderr, " where options are:\n");
fprintf(stderr, " -display <display> or -d <display>\n");
fprintf(stderr, " -help\n");
fprintf(stderr, " -o <normal,inverted,left,right,0,1,2,3>\n");
fprintf(stderr, " or --orientation <normal,inverted,left,right,0,1,2,3>\n");
fprintf(stderr, " -q or --query\n");
fprintf(stderr, " -s <size>/<width>x<height> or --size <size>/<width>x<height>\n");
fprintf(stderr, " -r <rate> or --rate <rate> or --refresh <rate>\n");
fprintf(stderr, " -v or --version\n");
fprintf(stderr, " -x (reflect in x)\n");
fprintf(stderr, " -y (reflect in y)\n");
fprintf(stderr, " --screen <screen>\n");
fprintf(stderr, " --verbose\n");
fprintf(stderr, " --current\n");
fprintf(stderr, " --dryrun\n");
fprintf(stderr, " --nograb\n");
fprintf(stderr, " --prop or --properties\n");
fprintf(stderr, " --fb <width>x<height>\n");
fprintf(stderr, " --fbmm <width>x<height>\n");
fprintf(stderr, " --dpi <dpi>/<output>\n");
fprintf(stderr, " --output <output>\n");
fprintf(stderr, " --auto\n");
fprintf(stderr, " --mode <mode>\n");
fprintf(stderr, " --preferred\n");
fprintf(stderr, " --pos <x>x<y>\n");
fprintf(stderr, " --rate <rate> or --refresh <rate>\n");
fprintf(stderr, " --reflect normal,x,y,xy\n");
fprintf(stderr, " --rotate normal,inverted,left,right\n");
fprintf(stderr, " --left-of <output>\n");
fprintf(stderr, " --right-of <output>\n");
fprintf(stderr, " --above <output>\n");
fprintf(stderr, " --below <output>\n");
fprintf(stderr, " --same-as <output>\n");
fprintf(stderr, " --set <property> <value>\n");
fprintf(stderr, " --scale <x>x<y>\n");
fprintf(stderr, " --scale-from <w>x<h>\n");
fprintf(stderr, " --transform <a>,<b>,<c>,<d>,<e>,<f>,<g>,<h>,<i>\n");
fprintf(stderr, " --off\n");
fprintf(stderr, " --crtc <crtc>\n");
fprintf(stderr,
" --panning <w>x<h>[+<x>+<y>[/<track:w>x<h>+<x>+<y>[/<border:l>/<t>/<r>/<b>]]]\n");
fprintf(stderr, " --gamma <r>:<g>:<b>\n");
fprintf(stderr, " --primary\n");
fprintf(stderr, " --noprimary\n");
fprintf(stderr, " --newmode <name> <clock MHz>\n");
fprintf(stderr, " <hdisp> <hsync-start> <hsync-end> <htotal>\n");
fprintf(stderr, " <vdisp> <vsync-start> <vsync-end> <vtotal>\n");
fprintf(stderr, " [flags...]\n");
fprintf(stderr, " Valid flags: +HSync -HSync +VSync -VSync\n");
fprintf(stderr, " +CSync -CSync CSync Interlace DoubleScan\n");
fprintf(stderr, " --rmmode <name>\n");
fprintf(stderr, " --addmode <output> <name>\n");
fprintf(stderr, " --delmode <output> <name>\n");
exit(1);
/*NOTREACHED*/
}
static void _X_NORETURN fatal(const char* format, ...)
{
va_list ap;
va_start(ap, format);
fprintf(stderr, "%s: ", program_name);
vfprintf(stderr, format, ap);
va_end(ap);
exit(1);
/*NOTREACHED*/
}
static void warning(const char* format, ...)
{
va_list ap;
va_start(ap, format);
fprintf(stderr, "%s: ", program_name);
vfprintf(stderr, format, ap);
va_end(ap);
}
static char* rotation_name(Rotation rotation)
{
int i;
if ((rotation & 0xf) == 0)
return "normal";
for (i = 0; i < 4; i++)
if (rotation & (1 << i))
return direction[i];
return "invalid rotation";
}
static char* reflection_name(Rotation rotation)
{
rotation &= (RR_Reflect_X | RR_Reflect_Y);
switch (rotation)
{
case 0:
return "none";
case RR_Reflect_X:
return "X axis";
case RR_Reflect_Y:
return "Y axis";
case RR_Reflect_X | RR_Reflect_Y:
return "X and Y axis";
}
return "invalid reflection";
}
typedef enum _relation
{
relation_left_of,
relation_right_of,
relation_above,
relation_below,
relation_same_as,
} relation_t;
typedef struct
{
int x, y, width, height;
} rectangle_t;
typedef struct
{
int x1, y1, x2, y2;
} box_t;
typedef struct
{
int x, y;
} point_t;
typedef enum _changes
{
changes_none = 0,
changes_crtc = (1 << 0),
changes_mode = (1 << 1),
changes_relation = (1 << 2),
changes_position = (1 << 3),
changes_rotation = (1 << 4),
changes_reflection = (1 << 5),
changes_automatic = (1 << 6),
changes_refresh = (1 << 7),
changes_property = (1 << 8),
changes_transform = (1 << 9),
changes_panning = (1 << 10),
changes_gamma = (1 << 11),
changes_primary = (1 << 12),
} changes_t;
typedef enum _name_kind
{
name_none = 0,
name_string = (1 << 0),
name_xid = (1 << 1),
name_index = (1 << 2),
name_preferred = (1 << 3),
} name_kind_t;
typedef struct
{
name_kind_t kind;
char* string;
XID xid;
int index;
} name_t;
typedef struct _crtc crtc_t;
typedef struct _output output_t;
typedef struct _transform transform_t;
typedef struct _umode umode_t;
typedef struct _output_prop output_prop_t;
struct _transform
{
XTransform transform;
char* filter;
int nparams;
XFixed* params;
};
struct _crtc
{
name_t crtc;
Bool changing;
XRRCrtcInfo* crtc_info;
XRRModeInfo* mode_info;
XRRPanning* panning_info;
int x;
int y;
Rotation rotation;
output_t** outputs;
int noutput;
transform_t current_transform, pending_transform;
};
struct _output_prop
{
struct _output_prop* next;
char* name;
char* value;
};
struct _output
{
struct _output* next;
changes_t changes;
output_prop_t* props;
name_t output;
XRROutputInfo* output_info;
name_t crtc;
crtc_t* crtc_info;
crtc_t* current_crtc_info;
name_t mode;
double refresh;
XRRModeInfo* mode_info;
name_t addmode;
relation_t relation;
char* relative_to;
int x, y;
Rotation rotation;
XRRPanning panning;
Bool automatic;
int scale_from_w, scale_from_h;
transform_t transform;
struct
{
float red;
float green;
float blue;
} gamma;
float brightness;
Bool primary;
Bool found;
};
typedef enum _umode_action
{
umode_create,
umode_destroy,
umode_add,
umode_delete
} umode_action_t;
struct _umode
{
struct _umode* next;
umode_action_t action;
XRRModeInfo mode;
name_t output;
name_t name;
};
/*
static char *connection[3] = {
"connected",
"disconnected",
"unknown connection"};
*/
static char* connection[3] = {"true", "false", "unknown"};
#define OUTPUT_NAME 1
#define CRTC_OFF 2
#define CRTC_UNSET 3
#define CRTC_INDEX 0x40000000
#define MODE_NAME 1
#define MODE_OFF 2
#define MODE_UNSET 3
#define MODE_PREF 4
#define POS_UNSET -1
static output_t* outputs = NULL;
static output_t** outputs_tail = &outputs;
static crtc_t* crtcs;
static umode_t* umodes;
static int num_crtcs;
static XRRScreenResources* res;
static int fb_width = 0, fb_height = 0;
static int fb_width_mm = 0, fb_height_mm = 0;
static double dpi = 0;
static char* dpi_output = NULL;
static Bool dryrun = False;
static int minWidth, maxWidth, minHeight, maxHeight;
static Bool has_1_2 = False;
static Bool has_1_3 = False;
static int mode_height(XRRModeInfo* mode_info, Rotation rotation)
{
switch (rotation & 0xf)
{
case RR_Rotate_0:
case RR_Rotate_180:
return mode_info->height;
case RR_Rotate_90:
case RR_Rotate_270:
return mode_info->width;
default:
return 0;
}
}
static int mode_width(XRRModeInfo* mode_info, Rotation rotation)
{
switch (rotation & 0xf)
{
case RR_Rotate_0:
case RR_Rotate_180:
return mode_info->width;
case RR_Rotate_90:
case RR_Rotate_270:
return mode_info->height;
default:
return 0;
}
}
static Bool transform_point(XTransform* transform, double* xp, double* yp)
{
double vector[3];
double result[3];
int i, j;
double v;
vector[0] = *xp;
vector[1] = *yp;
vector[2] = 1;
for (j = 0; j < 3; j++)
{
v = 0;
for (i = 0; i < 3; i++)
v += (XFixedToDouble(transform->matrix[j][i]) * vector[i]);
result[j] = v;
}
if (!result[2])
return False;
for (j = 0; j < 2; j++)
{
vector[j] = result[j] / result[2];
if (vector[j] > 32767 || vector[j] < -32767)
return False;
}
*xp = vector[0];
*yp = vector[1];
return True;
}
static void path_bounds(XTransform* transform, point_t* points, int npoints, box_t* box)
{
int i;
box_t point;
for (i = 0; i < npoints; i++)
{
double x, y;
x = points[i].x;
y = points[i].y;
transform_point(transform, &x, &y);
point.x1 = floor(x);
point.y1 = floor(y);
point.x2 = ceil(x);
point.y2 = ceil(y);
if (i == 0)
*box = point;
else
{
if (point.x1 < box->x1)
box->x1 = point.x1;
if (point.y1 < box->y1)
box->y1 = point.y1;
if (point.x2 > box->x2)
box->x2 = point.x2;
if (point.y2 > box->y2)
box->y2 = point.y2;
}
}
}
static void mode_geometry(XRRModeInfo* mode_info,
Rotation rotation,
XTransform* transform,
box_t* bounds)
{
point_t rect[4];
int width = mode_width(mode_info, rotation);
int height = mode_height(mode_info, rotation);
rect[0].x = 0;
rect[0].y = 0;
rect[1].x = width;
rect[1].y = 0;
rect[2].x = width;
rect[2].y = height;
rect[3].x = 0;
rect[3].y = height;
path_bounds(transform, rect, 4, bounds);
}
/* v refresh frequency in Hz */
static double mode_refresh(XRRModeInfo* mode_info)
{
double rate;
if (mode_info->hTotal && mode_info->vTotal)
rate = ((double)mode_info->dotClock / ((double)mode_info->hTotal * (double)mode_info->vTotal));
else
rate = 0;
return rate;
}
/* h sync frequency in Hz */
static double mode_hsync(XRRModeInfo* mode_info)
{
double rate;
if (mode_info->hTotal)
rate = (double)mode_info->dotClock / (double)mode_info->hTotal;
else
rate = 0;
return rate;
}
static void init_name(name_t* name)
{
name->kind = name_none;
}
static void set_name_string(name_t* name, char* string)
{
name->kind |= name_string;
name->string = string;
}
static void set_name_xid(name_t* name, XID xid)
{
name->kind |= name_xid;
name->xid = xid;
}
static void set_name_index(name_t* name, int index)
{
name->kind |= name_index;
name->index = index;
}
static void set_name_preferred(name_t* name)
{
name->kind |= name_preferred;
}
static void set_name_all(name_t* name, name_t* old)
{
if (old->kind & name_xid)
name->xid = old->xid;
if (old->kind & name_string)
name->string = old->string;
if (old->kind & name_index)
name->index = old->index;
name->kind |= old->kind;
}
static void set_name(name_t* name, char* string, name_kind_t valid)
{
unsigned int xid; /* don't make it XID (which is unsigned long):
scanf() takes unsigned int */
int index;
if ((valid & name_xid) && sscanf(string, "0x%x", &xid) == 1)
set_name_xid(name, xid);
else if ((valid & name_index) && sscanf(string, "%d", &index) == 1)
set_name_index(name, index);
else if (valid & name_string)
set_name_string(name, string);
else
usage();
}
static void init_transform(transform_t* transform)
{
int x;
memset(&transform->transform, '\0', sizeof(transform->transform));
for (x = 0; x < 3; x++)
transform->transform.matrix[x][x] = XDoubleToFixed(1.0);
transform->filter = "";
transform->nparams = 0;
transform->params = NULL;
}
static void set_transform(
transform_t* dest, XTransform* transform, char* filter, XFixed* params, int nparams)
{
dest->transform = *transform;
dest->filter = strdup(filter);
dest->nparams = nparams;
if (nparams)
{
dest->params = malloc(nparams * sizeof(XFixed));
memcpy(dest->params, params, nparams * sizeof(XFixed));
}
else
dest->params = NULL;
}
static void copy_transform(transform_t* dest, transform_t* src)
{
set_transform(dest, &src->transform, src->filter, src->params, src->nparams);
}
static Bool equal_transform(transform_t* a, transform_t* b)
{
if (memcmp(&a->transform, &b->transform, sizeof(XTransform)) != 0)
return False;
if (strcmp(a->filter, b->filter) != 0)
return False;
if (a->nparams != b->nparams)
return False;
if (memcmp(a->params, b->params, a->nparams * sizeof(XFixed)) != 0)
return False;
return True;
}
static output_t* add_output(void)
{
output_t* output = calloc(1, sizeof(output_t));
if (!output)
fatal("out of memory\n");
output->next = NULL;
output->found = False;
output->brightness = 1.0;
*outputs_tail = output;
outputs_tail = &output->next;
return output;
}
static output_t* find_output(name_t* name)
{
output_t* output;
for (output = outputs; output; output = output->next)
{
name_kind_t common = name->kind & output->output.kind;
if ((common & name_xid) && name->xid == output->output.xid)
break;
if ((common & name_string) && !strcmp(name->string, output->output.string))
break;
if ((common & name_index) && name->index == output->output.index)
break;
}
return output;
}
static output_t* find_output_by_xid(RROutput output)
{
name_t output_name;
init_name(&output_name);
set_name_xid(&output_name, output);
return find_output(&output_name);
}
static output_t* find_output_by_name(char* name)
{
name_t output_name;
init_name(&output_name);
set_name_string(&output_name, name);
return find_output(&output_name);
}
static crtc_t* find_crtc(name_t* name)
{
int c;
crtc_t* crtc = NULL;
for (c = 0; c < num_crtcs; c++)
{
name_kind_t common;
crtc = &crtcs[c];
common = name->kind & crtc->crtc.kind;
if ((common & name_xid) && name->xid == crtc->crtc.xid)
break;
if ((common & name_string) && !strcmp(name->string, crtc->crtc.string))
break;
if ((common & name_index) && name->index == crtc->crtc.index)
break;
crtc = NULL;
}
return crtc;
}
static crtc_t* find_crtc_by_xid(RRCrtc crtc)
{
name_t crtc_name;
init_name(&crtc_name);
set_name_xid(&crtc_name, crtc);
return find_crtc(&crtc_name);
}
static XRRModeInfo* find_mode(name_t* name, double refresh)
{
int m;
XRRModeInfo* best = NULL;
double bestDist = 0;
for (m = 0; m < res->nmode; m++)
{
XRRModeInfo* mode = &res->modes[m];
if ((name->kind & name_xid) && name->xid == mode->id)
{
best = mode;
break;
}
if ((name->kind & name_string) && !strcmp(name->string, mode->name))
{
double dist;
if (refresh)
dist = fabs(mode_refresh(mode) - refresh);
else
dist = 0;
if (!best || dist < bestDist)
{
bestDist = dist;
best = mode;
}
}
}
return best;
}
static XRRModeInfo* find_mode_by_xid(RRMode mode)
{
name_t mode_name;
init_name(&mode_name);
set_name_xid(&mode_name, mode);
return find_mode(&mode_name, 0);
}
#if 0
static XRRModeInfo *
find_mode_by_name (char *name)
{
name_t mode_name;
init_name (&mode_name);
set_name_string (&mode_name, name);
return find_mode (&mode_name, 0);
}
#endif
static XRRModeInfo* find_mode_for_output(output_t* output, name_t* name)
{
XRROutputInfo* output_info = output->output_info;
int m;
XRRModeInfo* best = NULL;
double bestDist = 0;
for (m = 0; m < output_info->nmode; m++)
{
XRRModeInfo* mode;
mode = find_mode_by_xid(output_info->modes[m]);
if (!mode)
continue;
if ((name->kind & name_xid) && name->xid == mode->id)
{
best = mode;
break;
}
if ((name->kind & name_string) && !strcmp(name->string, mode->name))
{
double dist;
/* Stay away from doublescan modes unless refresh rate is specified. */
if (!output->refresh && (mode->modeFlags & RR_DoubleScan))
continue;
if (output->refresh)
dist = fabs(mode_refresh(mode) - output->refresh);
else
dist = 0;
if (!best || dist < bestDist)
{
bestDist = dist;
best = mode;
}
}
}
return best;
}
static XRRModeInfo* preferred_mode(output_t* output)
{
XRROutputInfo* output_info = output->output_info;
int m;
XRRModeInfo* best;
int bestDist;
best = NULL;
bestDist = 0;
for (m = 0; m < output_info->nmode; m++)
{
XRRModeInfo* mode_info = find_mode_by_xid(output_info->modes[m]);
int dist;
if (m < output_info->npreferred)
dist = 0;
else if (output_info->mm_height)
dist = (1000 * DisplayHeight(dpy, screen) / DisplayHeightMM(dpy, screen) -
1000 * mode_info->height / output_info->mm_height);
else
dist = DisplayHeight(dpy, screen) - mode_info->height;
if (dist < 0)
dist = -dist;
if (!best || dist < bestDist)
{
best = mode_info;
bestDist = dist;
}
}
return best;
}
static Bool output_can_use_crtc(output_t* output, crtc_t* crtc)
{
XRROutputInfo* output_info = output->output_info;
int c;
for (c = 0; c < output_info->ncrtc; c++)
if (output_info->crtcs[c] == crtc->crtc.xid)
return True;
return False;
}
static Bool output_can_use_mode(output_t* output, XRRModeInfo* mode)
{
XRROutputInfo* output_info = output->output_info;
int m;
for (m = 0; m < output_info->nmode; m++)
if (output_info->modes[m] == mode->id)
return True;
return False;
}
static Bool crtc_can_use_rotation(crtc_t* crtc, Rotation rotation)
{
Rotation rotations = crtc->crtc_info->rotations;
Rotation dir = rotation & (RR_Rotate_0 | RR_Rotate_90 | RR_Rotate_180 | RR_Rotate_270);
Rotation reflect = rotation & (RR_Reflect_X | RR_Reflect_Y);
if (((rotations & dir) != 0) && ((rotations & reflect) == reflect))
return True;
return False;
}
#if 0
static Bool
crtc_can_use_transform (crtc_t *crtc, XTransform *transform)
{
int major, minor;
XRRQueryVersion (dpy, &major, &minor);
if (major > 1 || (major == 1 && minor >= 3))
return True;
return False;
}
/*
* Report only rotations that are supported by all crtcs
*/
static Rotation
output_rotations (output_t *output)
{
Bool found = False;
Rotation rotation = RR_Rotate_0;
XRROutputInfo *output_info = output->output_info;
int c;
for (c = 0; c < output_info->ncrtc; c++)
{
crtc_t *crtc = find_crtc_by_xid (output_info->crtcs[c]);
if (crtc)
{
if (!found) {
rotation = crtc->crtc_info->rotations;
found = True;
} else
rotation &= crtc->crtc_info->rotations;
}
}
return rotation;
}
#endif
static Bool output_can_use_rotation(output_t* output, Rotation rotation)
{
XRROutputInfo* output_info = output->output_info;
int c;
/* make sure all of the crtcs can use this rotation.
* yes, this is not strictly necessary, but it is
* simpler,and we expect most drivers to either
* support rotation everywhere or nowhere
*/
for (c = 0; c < output_info->ncrtc; c++)
{
crtc_t* crtc = find_crtc_by_xid(output_info->crtcs[c]);
if (crtc && !crtc_can_use_rotation(crtc, rotation))
return False;
}
return True;
}
static Bool output_is_primary(output_t* output)
{
if (has_1_3)
return XRRGetOutputPrimary(dpy, root) == output->output.xid;
return False;
}
/* Returns the index of the last value in an array < 0xffff */
static int find_last_non_clamped(CARD16 array[], int size)
{
int i;
for (i = size - 1; i > 0; i--)
{
if (array[i] < 0xffff)
return i;
}
return 0;
}
static void set_gamma_info(output_t* output)
{
XRRCrtcGamma* gamma;
double i1, v1, i2, v2;
int size, middle, last_best, last_red, last_green, last_blue;
CARD16* best_array;
if (!output->crtc_info)
return;
size = XRRGetCrtcGammaSize(dpy, output->crtc_info->crtc.xid);
if (!size)
{
warning("Failed to get size of gamma for output %s\n", output->output.string);
return;
}
gamma = XRRGetCrtcGamma(dpy, output->crtc_info->crtc.xid);
if (!gamma)
{
warning("Failed to get gamma for output %s\n", output->output.string);
return;
}
/*
* Here is a bit tricky because gamma is a whole curve for each
* color. So, typically, we need to represent 3 * 256 values as 3 + 1
* values. Therefore, we approximate the gamma curve (v) by supposing
* it always follows the way we set it: a power function (i^g)
* multiplied by a brightness (b).
* v = i^g * b
* so g = (ln(v) - ln(b))/ln(i)
* and b can be found using two points (v1,i1) and (v2, i2):
* b = e^((ln(v2)*ln(i1) - ln(v1)*ln(i2))/ln(i1/i2))
* For the best resolution, we select i2 at the highest place not
* clamped and i1 at i2/2. Note that if i2 = 1 (as in most normal
* cases), then b = v2.
*/
last_red = find_last_non_clamped(gamma->red, size);
last_green = find_last_non_clamped(gamma->green, size);
last_blue = find_last_non_clamped(gamma->blue, size);
best_array = gamma->red;
last_best = last_red;
if (last_green > last_best)
{
last_best = last_green;
best_array = gamma->green;
}
if (last_blue > last_best)
{
last_best = last_blue;
best_array = gamma->blue;
}
if (last_best == 0)
last_best = 1;
middle = last_best / 2;
i1 = (double)(middle + 1) / size;
v1 = (double)(best_array[middle]) / 65535;
i2 = (double)(last_best + 1) / size;
v2 = (double)(best_array[last_best]) / 65535;
if (v2 < 0.0001)
{ /* The screen is black */
output->brightness = 0;
output->gamma.red = 1;
output->gamma.green = 1;
output->gamma.blue = 1;
}
else
{
if ((last_best + 1) == size)
output->brightness = v2;
else
output->brightness = exp((log(v2) * log(i1) - log(v1) * log(i2)) / log(i1 / i2));
output->gamma.red = logf((gamma->red[last_red / 2]) / output->brightness / 65535) /
logf(((last_red / 2) + 1) / size);
output->gamma.green = logf((gamma->green[last_green / 2]) / output->brightness / 65535) /
logf(((last_green / 2) + 1) / size);
output->gamma.blue = logf((gamma->blue[last_blue / 2]) / output->brightness / 65535) /
logf(((last_blue / 2) + 1) / size);
}
XRRFreeGamma(gamma);
}
static void set_output_info(output_t* output, RROutput xid, XRROutputInfo* output_info)
{
/* sanity check output info */
if (output_info->connection != RR_Disconnected && !output_info->nmode)
warning("Output %s is not disconnected but has no modes\n", output_info->name);
/* set output name and info */
if (!(output->output.kind & name_xid))
set_name_xid(&output->output, xid);
if (!(output->output.kind & name_string))
set_name_string(&output->output, output_info->name);
output->output_info = output_info;
/* set crtc name and info */
if (!(output->changes & changes_crtc))
set_name_xid(&output->crtc, output_info->crtc);
if (output->crtc.kind == name_xid && output->crtc.xid == None)
output->crtc_info = NULL;
else
{
output->crtc_info = find_crtc(&output->crtc);
if (!output->crtc_info)
{
if (output->crtc.kind & name_xid)
fatal("cannot find crtc 0x%x\n", output->crtc.xid);
if (output->crtc.kind & name_index)
fatal("cannot find crtc %d\n", output->crtc.index);
}
if (!output_can_use_crtc(output, output->crtc_info))
fatal("output %s cannot use crtc 0x%x\n", output->output.string, output->crtc_info->crtc.xid);
}
/* set mode name and info */
if (!(output->changes & changes_mode))
{
crtc_t* crtc = NULL;
if (output_info->crtc)
crtc = find_crtc_by_xid(output_info->crtc);
if (crtc && crtc->crtc_info)
set_name_xid(&output->mode, crtc->crtc_info->mode);
else if (output->crtc_info)
set_name_xid(&output->mode, output->crtc_info->crtc_info->mode);
else
set_name_xid(&output->mode, None);
if (output->mode.xid)
{
output->mode_info = find_mode_by_xid(output->mode.xid);
if (!output->mode_info)
fatal("server did not report mode 0x%x for output %s\n", output->mode.xid,
output->output.string);
}
else
output->mode_info = NULL;
}
else if (output->mode.kind == name_xid && output->mode.xid == None)
output->mode_info = NULL;
else
{
if (output->mode.kind == name_preferred)
output->mode_info = preferred_mode(output);
else
output->mode_info = find_mode_for_output(output, &output->mode);
if (!output->mode_info)
{
if (output->mode.kind & name_preferred)
fatal("cannot find preferred mode\n");
if (output->mode.kind & name_string)
fatal("cannot find mode %s\n", output->mode.string);
if (output->mode.kind & name_xid)
fatal("cannot find mode 0x%x\n", output->mode.xid);
}
if (!output_can_use_mode(output, output->mode_info))
fatal("output %s cannot use mode %s\n", output->output.string, output->mode_info->name);
}
/* set position */
if (!(output->changes & changes_position))
{
if (output->crtc_info)
{
output->x = output->crtc_info->crtc_info->x;
output->y = output->crtc_info->crtc_info->y;
}
else
{
output->x = 0;
output->y = 0;
}
}
/* set rotation */
if (!(output->changes & changes_rotation))
{
output->rotation &= ~0xf;
if (output->crtc_info)
output->rotation |= (output->crtc_info->crtc_info->rotation & 0xf);
else
output->rotation = RR_Rotate_0;
}
if (!(output->changes & changes_reflection))
{
output->rotation &= ~(RR_Reflect_X | RR_Reflect_Y);
if (output->crtc_info)
output->rotation |= (output->crtc_info->crtc_info->rotation & (RR_Reflect_X | RR_Reflect_Y));
}
if (!output_can_use_rotation(output, output->rotation))
fatal("output %s cannot use rotation \"%s\" reflection \"%s\"\n", output->output.string,
rotation_name(output->rotation), reflection_name(output->rotation));
/* set gamma */
if (!(output->changes & changes_gamma))
set_gamma_info(output);
/* set transformation */
if (!(output->changes & changes_transform))
{
if (output->crtc_info)
copy_transform(&output->transform, &output->crtc_info->current_transform);
else
init_transform(&output->transform);
}
else
{
/* transform was already set for --scale or --transform */
/* for --scale-from, figure out the mode size and compute the transform
* for the target framebuffer area */
if (output->scale_from_w > 0 && output->mode_info)
{
double sx = (double)output->scale_from_w / output->mode_info->width;
double sy = (double)output->scale_from_h / output->mode_info->height;
if (verbose)
printf("scaling %s by %lfx%lf\n", output->output.string, sx, sy);
init_transform(&output->transform);
output->transform.transform.matrix[0][0] = XDoubleToFixed(sx);
output->transform.transform.matrix[1][1] = XDoubleToFixed(sy);
output->transform.transform.matrix[2][2] = XDoubleToFixed(1.0);
if (sx != 1 || sy != 1)
output->transform.filter = "bilinear";
else
output->transform.filter = "nearest";
output->transform.nparams = 0;
output->transform.params = NULL;
}
}
/* set primary */
if (!(output->changes & changes_primary))
output->primary = output_is_primary(output);
}
static void get_screen(Bool current)
{
if (!has_1_2)
fatal("Server RandR version before 1.2\n");
XRRGetScreenSizeRange(dpy, root, &minWidth, &minHeight, &maxWidth, &maxHeight);
if (current)
res = XRRGetScreenResourcesCurrent(dpy, root);
else
res = XRRGetScreenResources(dpy, root);
if (!res)
fatal("could not get screen resources");
}
static void get_crtcs(void)
{
int c;
num_crtcs = res->ncrtc;
crtcs = calloc(num_crtcs, sizeof(crtc_t));
if (!crtcs)
fatal("out of memory\n");
for (c = 0; c < res->ncrtc; c++)
{
XRRCrtcInfo* crtc_info = XRRGetCrtcInfo(dpy, res, res->crtcs[c]);
XRRCrtcTransformAttributes* attr;
XRRPanning* panning_info = NULL;
if (has_1_3)
{
XRRPanning zero;
memset(&zero, 0, sizeof(zero));
panning_info = XRRGetPanning(dpy, res, res->crtcs[c]);
zero.timestamp = panning_info->timestamp;
if (!memcmp(panning_info, &zero, sizeof(zero)))
{
Xfree(panning_info);
panning_info = NULL;
}
}
set_name_xid(&crtcs[c].crtc, res->crtcs[c]);
set_name_index(&crtcs[c].crtc, c);
if (!crtc_info)
fatal("could not get crtc 0x%x information\n", res->crtcs[c]);
crtcs[c].crtc_info = crtc_info;
crtcs[c].panning_info = panning_info;
if (crtc_info->mode == None)
{
crtcs[c].mode_info = NULL;
crtcs[c].x = 0;
crtcs[c].y = 0;
crtcs[c].rotation = RR_Rotate_0;
}
if (XRRGetCrtcTransform(dpy, res->crtcs[c], &attr) && attr)
{
set_transform(&crtcs[c].current_transform, &attr->currentTransform, attr->currentFilter,
attr->currentParams, attr->currentNparams);
XFree(attr);
}
else
{
init_transform(&crtcs[c].current_transform);
}
copy_transform(&crtcs[c].pending_transform, &crtcs[c].current_transform);
}
}
static void crtc_add_output(crtc_t* crtc, output_t* output)
{
if (crtc->outputs)
crtc->outputs = realloc(crtc->outputs, (crtc->noutput + 1) * sizeof(output_t*));
else
{
crtc->outputs = malloc(sizeof(output_t*));
crtc->x = output->x;
crtc->y = output->y;
crtc->rotation = output->rotation;
crtc->mode_info = output->mode_info;
copy_transform(&crtc->pending_transform, &output->transform);
}
if (!crtc->outputs)
fatal("out of memory\n");
crtc->outputs[crtc->noutput++] = output;
}
static void set_crtcs(void)
{
output_t* output;
for (output = outputs; output; output = output->next)
{
if (!output->mode_info)
continue;
crtc_add_output(output->crtc_info, output);
}
}
static void set_panning(void)
{
output_t* output;
for (output = outputs; output; output = output->next)
{
if (!output->crtc_info)
continue;
if (!(output->changes & changes_panning))
continue;
if (!output->crtc_info->panning_info)
output->crtc_info->panning_info = malloc(sizeof(XRRPanning));
memcpy(output->crtc_info->panning_info, &output->panning, sizeof(XRRPanning));
output->crtc_info->changing = 1;
}
}
static void set_gamma(void)
{
output_t* output;
for (output = outputs; output; output = output->next)
{
int i, size;
crtc_t* crtc;
XRRCrtcGamma* gamma;
if (!(output->changes & changes_gamma))
continue;
if (!output->crtc_info)
{
fatal("Need crtc to set gamma on.\n");
continue;
}
crtc = output->crtc_info;
size = XRRGetCrtcGammaSize(dpy, crtc->crtc.xid);
if (!size)
{
fatal("Gamma size is 0.\n");
continue;
}
gamma = XRRAllocGamma(size);
if (!gamma)
{
fatal("Gamma allocation failed.\n");
continue;
}
if (output->gamma.red == 0.0f && output->gamma.green == 0.0f && output->gamma.blue == 0.0f)
output->gamma.red = output->gamma.green = output->gamma.blue = 1.0f;
for (i = 0; i < size; i++)
{
if (output->gamma.red == 1.0f && output->brightness == 1.0f)
gamma->red[i] = (i << 8) + i;
else
gamma->red[i] =
min(powf((float)i / (float)(size - 1), output->gamma.red) * output->brightness, 1.0f) *
65535.0f;
if (output->gamma.green == 1.0f && output->brightness == 1.0f)
gamma->green[i] = (i << 8) + i;
else
gamma->green[i] =
min(powf((float)i / (float)(size - 1), output->gamma.green) * output->brightness,
1.0f) *
65535.0f;
if (output->gamma.blue == 1.0f && output->brightness == 1.0f)
gamma->blue[i] = (i << 8) + i;
else
gamma->blue[i] =
min(powf((float)i / (float)(size - 1), output->gamma.blue) * output->brightness, 1.0f) *
65535.0f;
}
XRRSetCrtcGamma(dpy, crtc->crtc.xid, gamma);
free(gamma);
}
}
static void set_primary(void)
{
output_t* output;
if (no_primary)
{
XRRSetOutputPrimary(dpy, root, None);
}
else
{
for (output = outputs; output; output = output->next)
{
if (!(output->changes & changes_primary))
continue;
if (output->primary)
XRRSetOutputPrimary(dpy, root, output->output.xid);
}
}
}
static Status crtc_disable(crtc_t* crtc)
{
if (verbose)
printf("crtc %d: disable\n", crtc->crtc.index);
if (dryrun)
return RRSetConfigSuccess;
return XRRSetCrtcConfig(dpy, res, crtc->crtc.xid, CurrentTime, 0, 0, None, RR_Rotate_0, NULL, 0);
}
static void crtc_set_transform(crtc_t* crtc, transform_t* transform)
{
int major, minor;
XRRQueryVersion(dpy, &major, &minor);
if (major > 1 || (major == 1 && minor >= 3))
XRRSetCrtcTransform(dpy, crtc->crtc.xid, &transform->transform, transform->filter,
transform->params, transform->nparams);
}
static Status crtc_revert(crtc_t* crtc)
{
XRRCrtcInfo* crtc_info = crtc->crtc_info;
if (verbose)
printf("crtc %d: revert\n", crtc->crtc.index);
if (dryrun)
return RRSetConfigSuccess;
if (!equal_transform(&crtc->current_transform, &crtc->pending_transform))
crtc_set_transform(crtc, &crtc->current_transform);
return XRRSetCrtcConfig(dpy, res, crtc->crtc.xid, CurrentTime, crtc_info->x, crtc_info->y,
crtc_info->mode, crtc_info->rotation, crtc_info->outputs,
crtc_info->noutput);
}
static Status crtc_apply(crtc_t* crtc)
{
RROutput* rr_outputs;
int o;
Status s;
RRMode mode = None;
if (!crtc->changing || !crtc->mode_info)
return RRSetConfigSuccess;
rr_outputs = calloc(crtc->noutput, sizeof(RROutput));
if (!rr_outputs)
return BadAlloc;
for (o = 0; o < crtc->noutput; o++)
rr_outputs[o] = crtc->outputs[o]->output.xid;
mode = crtc->mode_info->id;
if (verbose)
{
printf("crtc %d: %12s %6.1f +%d+%d", crtc->crtc.index, crtc->mode_info->name,
mode_refresh(crtc->mode_info), crtc->x, crtc->y);
for (o = 0; o < crtc->noutput; o++)
printf(" \"%s\"", crtc->outputs[o]->output.string);
printf("\n");
}
if (dryrun)
s = RRSetConfigSuccess;
else
{
if (!equal_transform(&crtc->current_transform, &crtc->pending_transform))
crtc_set_transform(crtc, &crtc->pending_transform);
s = XRRSetCrtcConfig(dpy, res, crtc->crtc.xid, CurrentTime, crtc->x, crtc->y, mode,
crtc->rotation, rr_outputs, crtc->noutput);
if (s == RRSetConfigSuccess && crtc->panning_info)
{
if (has_1_3)
s = XRRSetPanning(dpy, res, crtc->crtc.xid, crtc->panning_info);
else
fatal("panning needs RandR 1.3\n");
}
}
free(rr_outputs);
return s;
}
static void screen_revert(void)
{
if (verbose)
printf("screen %d: revert\n", screen);
if (dryrun)
return;
XRRSetScreenSize(dpy, root, DisplayWidth(dpy, screen), DisplayHeight(dpy, screen),
DisplayWidthMM(dpy, screen), DisplayHeightMM(dpy, screen));
}
static void screen_apply(void)
{
if (fb_width == DisplayWidth(dpy, screen) && fb_height == DisplayHeight(dpy, screen) &&
fb_width_mm == DisplayWidthMM(dpy, screen) && fb_height_mm == DisplayHeightMM(dpy, screen))
{
return;
}
if (verbose)
printf("screen %d: %dx%d %dx%d mm %6.2fdpi\n", screen, fb_width, fb_height, fb_width_mm,
fb_height_mm, dpi);
if (dryrun)
return;
XRRSetScreenSize(dpy, root, fb_width, fb_height, fb_width_mm, fb_height_mm);
}
static void revert(void)
{
int c;
/* first disable all crtcs */
for (c = 0; c < res->ncrtc; c++)
crtc_disable(&crtcs[c]);
/* next reset screen size */
screen_revert();
/* now restore all crtcs */
for (c = 0; c < res->ncrtc; c++)
crtc_revert(&crtcs[c]);
}
/*
* uh-oh, something bad happened in the middle of changing
* the configuration. Revert to the previous configuration
* and bail
*/
static void _X_NORETURN panic(Status s, crtc_t* crtc)
{
int c = crtc->crtc.index;
char* message;
switch (s)
{
case RRSetConfigSuccess:
message = "succeeded";
break;
case BadAlloc:
message = "out of memory";
break;
case RRSetConfigFailed:
message = "failed";
break;
case RRSetConfigInvalidConfigTime:
message = "invalid config time";
break;
case RRSetConfigInvalidTime:
message = "invalid time";
break;
default:
message = "unknown failure";
break;
}
fprintf(stderr, "%s: Configure crtc %d %s\n", program_name, c, message);
revert();
exit(1);
}
static void apply(void)
{
Status s;
int c;
/*
* Hold the server grabbed while messing with
* the screen so that apps which notice the resize
* event and ask for xinerama information from the server
* receive up-to-date information
*/
if (grab_server)
XGrabServer(dpy);
/*
* Turn off any crtcs which are to be disabled or which are
* larger than the target size
*/
for (c = 0; c < res->ncrtc; c++)
{
crtc_t* crtc = &crtcs[c];
XRRCrtcInfo* crtc_info = crtc->crtc_info;
/* if this crtc is already disabled, skip it */
if (crtc_info->mode == None)
continue;
/*
* If this crtc is to be left enabled, make
* sure the old size fits then new screen
*/
if (crtc->mode_info)
{
XRRModeInfo* old_mode = find_mode_by_xid(crtc_info->mode);
int x, y, w, h;
box_t bounds;
if (!old_mode)
panic(RRSetConfigFailed, crtc);
/* old position and size information */
mode_geometry(old_mode, crtc_info->rotation, &crtc->current_transform.transform, &bounds);
x = crtc_info->x + bounds.x1;
y = crtc_info->y + bounds.y1;
w = bounds.x2 - bounds.x1;
h = bounds.y2 - bounds.y1;
/* if it fits, skip it */
if (x + w <= fb_width && y + h <= fb_height)
continue;
crtc->changing = True;
}
s = crtc_disable(crtc);
if (s != RRSetConfigSuccess)
panic(s, crtc);
}
/*
* Set the screen size
*/
screen_apply();
/*
* Set crtcs
*/
for (c = 0; c < res->ncrtc; c++)
{
crtc_t* crtc = &crtcs[c];
s = crtc_apply(crtc);
if (s != RRSetConfigSuccess)
panic(s, crtc);
}
set_primary();
/*
* Release the server grab and let all clients
* respond to the updated state
*/
if (grab_server)
XUngrabServer(dpy);
}
/*
* Use current output state to complete the output list
*/
static void get_outputs(void)
{
int o;
output_t* q;
for (o = 0; o < res->noutput; o++)
{
XRROutputInfo* output_info = XRRGetOutputInfo(dpy, res, res->outputs[o]);
output_t* output;
name_t output_name;
if (!output_info)
fatal("could not get output 0x%x information\n", res->outputs[o]);
init_name(&output_name);
set_name_xid(&output_name, res->outputs[o]);
set_name_index(&output_name, o);
set_name_string(&output_name, output_info->name);
output = find_output(&output_name);
if (!output)
{
output = add_output();
set_name_all(&output->output, &output_name);
/*
* When global --automatic mode is set, turn on connected but off
* outputs, turn off disconnected but on outputs
*/
if (automatic)
{
switch (output_info->connection)
{
case RR_Connected:
if (!output_info->crtc)
{
output->changes |= changes_automatic;
output->automatic = True;
}
break;
case RR_Disconnected:
if (output_info->crtc)
{
output->changes |= changes_automatic;
output->automatic = True;
}
break;
}
}
}
output->found = True;
/*
* Automatic mode -- track connection state and enable/disable outputs
* as necessary
*/
if (output->automatic)
{
switch (output_info->connection)
{
case RR_Connected:
case RR_UnknownConnection:
if ((!(output->changes & changes_mode)))
{
set_name_preferred(&output->mode);
output->changes |= changes_mode;
}
break;
case RR_Disconnected:
if ((!(output->changes & changes_mode)))
{
set_name_xid(&output->mode, None);
set_name_xid(&output->crtc, None);
output->changes |= changes_mode;
output->changes |= changes_crtc;
}
break;
}
}
set_output_info(output, res->outputs[o], output_info);
}
for (q = outputs; q; q = q->next)
{
if (!q->found)
{
fprintf(stderr, "warning: output %s not found; ignoring\n", q->output.string);
}
}
}
static void mark_changing_crtcs(void)
{
int c;
for (c = 0; c < num_crtcs; c++)
{
crtc_t* crtc = &crtcs[c];
int o;
output_t* output;
/* walk old output list (to catch disables) */
for (o = 0; o < crtc->crtc_info->noutput; o++)
{
output = find_output_by_xid(crtc->crtc_info->outputs[o]);
if (!output)
fatal("cannot find output 0x%x\n", crtc->crtc_info->outputs[o]);
if (output->changes)
crtc->changing = True;
}
/* walk new output list */
for (o = 0; o < crtc->noutput; o++)
{
output = crtc->outputs[o];
if (output->changes)
crtc->changing = True;
}
}
}
/*
* Test whether 'crtc' can be used for 'output'
*/
static Bool check_crtc_for_output(crtc_t* crtc, output_t* output)
{
int c;
int l;
output_t* other;
for (c = 0; c < output->output_info->ncrtc; c++)
if (output->output_info->crtcs[c] == crtc->crtc.xid)
break;
if (c == output->output_info->ncrtc)
return False;
for (other = outputs; other; other = other->next)
{
if (other == output)
continue;
if (other->mode_info == NULL)
continue;
if (other->crtc_info != crtc)
continue;
/* see if the output connected to the crtc can clone to this output */
for (l = 0; l < output->output_info->nclone; l++)
if (output->output_info->clones[l] == other->output.xid)
break;
/* not on the list, can't clone */
if (l == output->output_info->nclone)
return False;
}
if (crtc->noutput)
{
/* make sure the state matches */
if (crtc->mode_info != output->mode_info)
return False;
if (crtc->x != output->x)
return False;
if (crtc->y != output->y)
return False;
if (crtc->rotation != output->rotation)
return False;
if (!equal_transform(&crtc->current_transform, &output->transform))
return False;
}
else if (crtc->crtc_info->noutput)
{
/* make sure the state matches the already used state */
XRRModeInfo* mode = find_mode_by_xid(crtc->crtc_info->mode);
if (mode != output->mode_info)
return False;
if (crtc->crtc_info->x != output->x)
return False;
if (crtc->crtc_info->y != output->y)
return False;
if (crtc->crtc_info->rotation != output->rotation)
return False;
}
return True;
}
static crtc_t* find_crtc_for_output(output_t* output)
{
int c;
for (c = 0; c < output->output_info->ncrtc; c++)
{
crtc_t* crtc;
crtc = find_crtc_by_xid(output->output_info->crtcs[c]);
if (!crtc)
fatal("cannot find crtc 0x%x\n", output->output_info->crtcs[c]);
if (check_crtc_for_output(crtc, output))
return crtc;
}
return NULL;
}
static void set_positions(void)
{
output_t* output;
Bool keep_going;
Bool any_set;
int min_x, min_y;
for (;;)
{
any_set = False;
keep_going = False;
for (output = outputs; output; output = output->next)
{
output_t* relation;
name_t relation_name;
if (!(output->changes & changes_relation))
continue;
if (output->mode_info == NULL)
continue;
init_name(&relation_name);
set_name_string(&relation_name, output->relative_to);
relation = find_output(&relation_name);
if (!relation)
fatal("cannot find output \"%s\"\n", output->relative_to);
if (relation->mode_info == NULL)
{
output->x = 0;
output->y = 0;
output->changes |= changes_position;
any_set = True;
continue;
}
/*
* Make sure the dependent object has been set in place
*/
if ((relation->changes & changes_relation) && !(relation->changes & changes_position))
{
keep_going = True;
continue;
}
switch (output->relation)
{
case relation_left_of:
output->y = relation->y;
output->x = relation->x - mode_width(output->mode_info, output->rotation);
break;
case relation_right_of:
output->y = relation->y;
output->x = relation->x + mode_width(relation->mode_info, relation->rotation);
break;
case relation_above:
output->x = relation->x;
output->y = relation->y - mode_height(output->mode_info, output->rotation);
break;
case relation_below:
output->x = relation->x;
output->y = relation->y + mode_height(relation->mode_info, relation->rotation);
break;
case relation_same_as:
output->x = relation->x;
output->y = relation->y;
}
output->changes |= changes_position;
any_set = True;
}
if (!keep_going)
break;
if (!any_set)
fatal("loop in relative position specifications\n");
}
/*
* Now normalize positions so the upper left corner of all outputs is at 0,0
*/
min_x = 32768;
min_y = 32768;
for (output = outputs; output; output = output->next)
{
if (output->mode_info == NULL)
continue;
if (output->x < min_x)
min_x = output->x;
if (output->y < min_y)
min_y = output->y;
}
if (min_x || min_y)
{
/* move all outputs */
for (output = outputs; output; output = output->next)
{
if (output->mode_info == NULL)
continue;
output->x -= min_x;
output->y -= min_y;
output->changes |= changes_position;
}
}
}
static void set_screen_size(void)
{
output_t* output;
Bool fb_specified = fb_width != 0 && fb_height != 0;
for (output = outputs; output; output = output->next)
{
XRRModeInfo* mode_info = output->mode_info;
int x, y, w, h;
box_t bounds;
if (!mode_info)
continue;
mode_geometry(mode_info, output->rotation, &output->transform.transform, &bounds);
x = output->x + bounds.x1;
y = output->y + bounds.y1;
w = bounds.x2 - bounds.x1;
h = bounds.y2 - bounds.y1;
/* make sure output fits in specified size */
if (fb_specified)
{
if (x + w > fb_width || y + h > fb_height)
warning("specified screen %dx%d not large enough for output %s (%dx%d+%d+%d)\n", fb_width,
fb_height, output->output.string, w, h, x, y);
}
/* fit fb to output */
else
{
XRRPanning* pan;
if (x + w > fb_width)
fb_width = x + w;
if (y + h > fb_height)
fb_height = y + h;
if (output->changes & changes_panning)
pan = &output->panning;
else
pan = output->crtc_info ? output->crtc_info->panning_info : NULL;
if (pan && pan->left + pan->width > (unsigned int)fb_width)
fb_width = pan->left + pan->width;
if (pan && pan->top + pan->height > (unsigned int)fb_height)
fb_height = pan->top + pan->height;
}
}
if (fb_width > maxWidth || fb_height > maxHeight)
fatal("screen cannot be larger than %dx%d (desired size %dx%d)\n", maxWidth, maxHeight,
fb_width, fb_height);
if (fb_specified)
{
if (fb_width < minWidth || fb_height < minHeight)
fatal("screen must be at least %dx%d\n", minWidth, minHeight);
}
else
{
if (fb_width < minWidth)
fb_width = minWidth;
if (fb_height < minHeight)
fb_height = minHeight;
}
}
static void disable_outputs(output_t* outputs)
{
while (outputs)
{
outputs->crtc_info = NULL;
outputs = outputs->next;
}
}
/*
* find the best mapping from output to crtc available
*/
static int pick_crtcs_score(output_t* outputs)
{
output_t* output;
int best_score;
int my_score;
int score;
crtc_t* best_crtc;
int c;
if (!outputs)
return 0;
output = outputs;
outputs = outputs->next;
/*
* Score with this output disabled
*/
output->crtc_info = NULL;
best_score = pick_crtcs_score(outputs);
if (output->mode_info == NULL)
return best_score;
best_crtc = NULL;
/*
* Now score with this output any valid crtc
*/
for (c = 0; c < output->output_info->ncrtc; c++)
{
crtc_t* crtc;
crtc = find_crtc_by_xid(output->output_info->crtcs[c]);
if (!crtc)
fatal("cannot find crtc 0x%x\n", output->output_info->crtcs[c]);
/* reset crtc allocation for following outputs */
disable_outputs(outputs);
if (!check_crtc_for_output(crtc, output))
continue;
my_score = 1000;
/* slight preference for existing connections */
if (crtc == output->current_crtc_info)
my_score++;
output->crtc_info = crtc;
score = my_score + pick_crtcs_score(outputs);
if (score > best_score)
{
best_crtc = crtc;
best_score = score;
}
}
if (output->crtc_info != best_crtc)
output->crtc_info = best_crtc;
/*
* Reset other outputs based on this one using the best crtc
*/
(void)pick_crtcs_score(outputs);
return best_score;
}
/*
* Pick crtcs for any changing outputs that don't have one
*/
static void pick_crtcs(void)
{
output_t* output;
/*
* First try to match up newly enabled outputs with spare crtcs
*/
for (output = outputs; output; output = output->next)
{
if (output->changes && output->mode_info)
{
if (output->crtc_info)
{
if (output->crtc_info->crtc_info->noutput > 0 &&
(output->crtc_info->crtc_info->noutput > 1 ||
output != find_output_by_xid(output->crtc_info->crtc_info->outputs[0])))
break;
}
else
{
output->crtc_info = find_crtc_for_output(output);
if (!output->crtc_info)
break;
}
}
}
/*
* Everyone is happy
*/
if (!output)
return;
/*
* When the simple way fails, see if there is a way
* to swap crtcs around and make things work
*/
for (output = outputs; output; output = output->next)
output->current_crtc_info = output->crtc_info;
pick_crtcs_score(outputs);
for (output = outputs; output; output = output->next)
{
if (output->mode_info && !output->crtc_info)
fatal("cannot find crtc for output %s\n", output->output.string);
if (!output->changes && output->crtc_info != output->current_crtc_info)
output->changes |= changes_crtc;
}
}
static int check_strtol(char* s)
{
char* endptr;
int result = strtol(s, &endptr, 10);
if (s == endptr)
usage();
return result;
}
static double check_strtod(char* s)
{
char* endptr;
double result = strtod(s, &endptr);
if (s == endptr)
usage();
return result;
}
int main(int argc, char** argv)
{
XRRScreenSize* sizes;
XRRScreenConfiguration* sc;
int nsize;
int nrate;
short* rates;
Status status = RRSetConfigFailed;
int rot = -1;
int query = False;
int action_requested = False;
Rotation rotation, current_rotation, rotations;
XRRScreenChangeNotifyEvent event;
XRRScreenChangeNotifyEvent* sce;
char* display_name = NULL;
int i, j;
SizeID current_size;
short current_rate;
double rate = -1;
int size = -1;
int dirind = 0;
Bool setit = False;
Bool version = False;
int event_base, error_base;
int reflection = 0;
int width = 0, height = 0;
Bool have_pixel_size = False;
int ret = 0;
output_t* output = NULL;
Bool setit_1_2 = False;
Bool query_1_2 = False;
Bool modeit = False;
Bool propit = False;
Bool query_1 = False;
int major, minor;
Bool current = False;
program_name = argv[0];
for (i = 1; i < argc; i++)
{
if (!strcmp("-display", argv[i]) || !strcmp("-d", argv[i]))
{
if (++i >= argc)
usage();
display_name = argv[i];
continue;
}
if (!strcmp("-help", argv[i]))
{
usage();
action_requested = True;
continue;
}
if (!strcmp("--verbose", argv[i]))
{
verbose = True;
continue;
}
if (!strcmp("--dryrun", argv[i]))
{
dryrun = True;
verbose = True;
continue;
}
if (!strcmp("--nograb", argv[i]))
{
grab_server = False;
continue;
}
if (!strcmp("--current", argv[i]))
{
current = True;
continue;
}
if (!strcmp("-s", argv[i]) || !strcmp("--size", argv[i]))
{
if (++i >= argc)
usage();
if (sscanf(argv[i], "%dx%d", &width, &height) == 2)
{
have_pixel_size = True;
}
else
{
size = check_strtol(argv[i]);
if (size < 0)
usage();
}
setit = True;
action_requested = True;
continue;
}
if (!strcmp("-r", argv[i]) || !strcmp("--rate", argv[i]) || !strcmp("--refresh", argv[i]))
{
if (++i >= argc)
usage();
rate = check_strtod(argv[i]);
setit = True;
if (output)
{
output->refresh = rate;
output->changes |= changes_refresh;
setit_1_2 = True;
}
action_requested = True;
continue;
}
if (!strcmp("-v", argv[i]) || !strcmp("--version", argv[i]))
{
version = True;
action_requested = True;
continue;
}
if (!strcmp("-x", argv[i]))
{
reflection |= RR_Reflect_X;
setit = True;
action_requested = True;
continue;
}
if (!strcmp("-y", argv[i]))
{
reflection |= RR_Reflect_Y;
setit = True;
action_requested = True;
continue;
}
if (!strcmp("--screen", argv[i]))
{
if (++i >= argc)
usage();
screen = check_strtol(argv[i]);
if (screen < 0)
usage();
continue;
}
if (!strcmp("-q", argv[i]) || !strcmp("--query", argv[i]))
{
query = True;
continue;
}
if (!strcmp("-o", argv[i]) || !strcmp("--orientation", argv[i]))
{
char* endptr;
if (++i >= argc)
usage();
dirind = strtol(argv[i], &endptr, 10);
if (argv[i] == endptr)
{
for (dirind = 0; dirind < 4; dirind++)
{
if (strcmp(direction[dirind], argv[i]) == 0)
break;
}
if ((dirind < 0) || (dirind > 3))
usage();
}
rot = dirind;
setit = True;
action_requested = True;
continue;
}
if (!strcmp("--prop", argv[i]) || !strcmp("--props", argv[i]) ||
!strcmp("--madprops", argv[i]) || !strcmp("--properties", argv[i]))
{
query_1_2 = True;
properties = True;
action_requested = True;
continue;
}
if (!strcmp("--output", argv[i]))
{
if (++i >= argc)
usage();
output = find_output_by_name(argv[i]);
if (!output)
{
output = add_output();
set_name(&output->output, argv[i], name_string | name_xid);
}
setit_1_2 = True;
action_requested = True;
continue;
}
if (!strcmp("--crtc", argv[i]))
{
if (++i >= argc)
usage();
if (!output)
usage();
set_name(&output->crtc, argv[i], name_xid | name_index);
output->changes |= changes_crtc;
continue;
}
if (!strcmp("--mode", argv[i]))
{
if (++i >= argc)
usage();
if (!output)
usage();
set_name(&output->mode, argv[i], name_string | name_xid);
output->changes |= changes_mode;
continue;
}
if (!strcmp("--preferred", argv[i]))
{
if (!output)
usage();
set_name_preferred(&output->mode);
output->changes |= changes_mode;
continue;
}
if (!strcmp("--pos", argv[i]))
{
if (++i >= argc)
usage();
if (!output)
usage();
if (sscanf(argv[i], "%dx%d", &output->x, &output->y) != 2)
usage();
output->changes |= changes_position;
continue;
}
if (!strcmp("--rotation", argv[i]) || !strcmp("--rotate", argv[i]))
{
if (++i >= argc)
usage();
if (!output)
usage();
for (dirind = 0; dirind < 4; dirind++)
{
if (strcmp(direction[dirind], argv[i]) == 0)
break;
}
if (dirind == 4)
usage();
output->rotation &= ~0xf;
output->rotation |= 1 << dirind;
output->changes |= changes_rotation;
continue;
}
if (!strcmp("--reflect", argv[i]) || !strcmp("--reflection", argv[i]))
{
if (++i >= argc)
usage();
if (!output)
usage();
for (dirind = 0; dirind < 4; dirind++)
{
if (strcmp(reflections[dirind], argv[i]) == 0)
break;
}
if (dirind == 4)
usage();
output->rotation &= ~(RR_Reflect_X | RR_Reflect_Y);
output->rotation |= dirind * RR_Reflect_X;
output->changes |= changes_reflection;
continue;
}
if (!strcmp("--left-of", argv[i]))
{
if (++i >= argc)
usage();
if (!output)
usage();
output->relation = relation_left_of;
output->relative_to = argv[i];
output->changes |= changes_relation;
continue;
}
if (!strcmp("--right-of", argv[i]))
{
if (++i >= argc)
usage();
if (!output)
usage();
output->relation = relation_right_of;
output->relative_to = argv[i];
output->changes |= changes_relation;
continue;
}
if (!strcmp("--above", argv[i]))
{
if (++i >= argc)
usage();
if (!output)
usage();
output->relation = relation_above;
output->relative_to = argv[i];
output->changes |= changes_relation;
continue;
}
if (!strcmp("--below", argv[i]))
{
if (++i >= argc)
usage();
if (!output)
usage();
output->relation = relation_below;
output->relative_to = argv[i];
output->changes |= changes_relation;
continue;
}
if (!strcmp("--same-as", argv[i]))
{
if (++i >= argc)
usage();
if (!output)
usage();
output->relation = relation_same_as;
output->relative_to = argv[i];
output->changes |= changes_relation;
continue;
}
if (!strcmp("--panning", argv[i]))
{
XRRPanning* pan;
if (++i >= argc)
usage();
if (!output)
usage();
pan = &output->panning;
switch (sscanf(argv[i], "%dx%d+%d+%d/%dx%d+%d+%d/%d/%d/%d/%d", &pan->width, &pan->height,
&pan->left, &pan->top, &pan->track_width, &pan->track_height, &pan->track_left,
&pan->track_top, &pan->border_left, &pan->border_top, &pan->border_right,
&pan->border_bottom))
{
case 2:
pan->left = pan->top = 0;
/* fall through */
__attribute__((fallthrough));
case 4:
pan->track_left = pan->track_top = pan->track_width = pan->track_height = 0;
/* fall through */
__attribute__((fallthrough));
case 8:
pan->border_left = pan->border_top = pan->border_right = pan->border_bottom = 0;
/* fall through */
__attribute__((fallthrough));
case 12:
break;
default:
usage();
}
output->changes |= changes_panning;
continue;
}
if (!strcmp("--gamma", argv[i]))
{
if (!output)
usage();
if (++i >= argc)
usage();
if (sscanf(argv[i], "%f:%f:%f", &output->gamma.red, &output->gamma.green,
&output->gamma.blue) != 3)
usage();
output->changes |= changes_gamma;
setit_1_2 = True;
continue;
}
if (!strcmp("--brightness", argv[i]))
{
if (!output)
usage();
if (++i >= argc)
usage();
if (sscanf(argv[i], "%f", &output->brightness) != 1)
usage();
output->changes |= changes_gamma;
setit_1_2 = True;
continue;
}
if (!strcmp("--primary", argv[i]))
{
if (!output)
usage();
output->changes |= changes_primary;
output->primary = True;
setit_1_2 = True;
continue;
}
if (!strcmp("--noprimary", argv[i]))
{
no_primary = True;
setit_1_2 = True;
continue;
}
if (!strcmp("--set", argv[i]))
{
output_prop_t* prop;
if (!output)
usage();
prop = malloc(sizeof(output_prop_t));
prop->next = output->props;
output->props = prop;
if (++i >= argc)
usage();
prop->name = argv[i];
if (++i >= argc)
usage();
prop->value = argv[i];
propit = True;
output->changes |= changes_property;
setit_1_2 = True;
continue;
}
if (!strcmp("--scale", argv[i]))
{
double sx, sy;
if (!output)
usage();
if (++i >= argc)
usage();
if (sscanf(argv[i], "%lfx%lf", &sx, &sy) != 2)
usage();
init_transform(&output->transform);
output->transform.transform.matrix[0][0] = XDoubleToFixed(sx);
output->transform.transform.matrix[1][1] = XDoubleToFixed(sy);
output->transform.transform.matrix[2][2] = XDoubleToFixed(1.0);
if (sx != 1 || sy != 1)
output->transform.filter = "bilinear";
else
output->transform.filter = "nearest";
output->transform.nparams = 0;
output->transform.params = NULL;
output->changes |= changes_transform;
continue;
}
if (!strcmp("--scale-from", argv[i]))
{
int w, h;
if (!output)
usage();
if (++i >= argc)
usage();
if (sscanf(argv[i], "%dx%d", &w, &h) != 2)
usage();
if (w <= 0 || h <= 0)
usage();
output->scale_from_w = w;
output->scale_from_h = h;
output->changes |= changes_transform;
continue;
}
if (!strcmp("--transform", argv[i]))
{
double transform[3][3];
int k, l;
if (!output)
usage();
if (++i >= argc)
usage();
init_transform(&output->transform);
if (strcmp(argv[i], "none") != 0)
{
if (sscanf(argv[i], "%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf", &transform[0][0],
&transform[0][1], &transform[0][2], &transform[1][0], &transform[1][1],
&transform[1][2], &transform[2][0], &transform[2][1], &transform[2][2]) != 9)
usage();
init_transform(&output->transform);
for (k = 0; k < 3; k++)
for (l = 0; l < 3; l++)
{
output->transform.transform.matrix[k][l] = XDoubleToFixed(transform[k][l]);
}
output->transform.filter = "bilinear";
output->transform.nparams = 0;
output->transform.params = NULL;
}
output->changes |= changes_transform;
continue;
}
if (!strcmp("--off", argv[i]))
{
if (!output)
usage();
set_name_xid(&output->mode, None);
set_name_xid(&output->crtc, None);
output->changes |= changes_mode;
continue;
}
if (!strcmp("--fb", argv[i]))
{
if (++i >= argc)
usage();
if (sscanf(argv[i], "%dx%d", &fb_width, &fb_height) != 2)
usage();
setit_1_2 = True;
action_requested = True;
continue;
}
if (!strcmp("--fbmm", argv[i]))
{
if (++i >= argc)
usage();
if (sscanf(argv[i], "%dx%d", &fb_width_mm, &fb_height_mm) != 2)
usage();
setit_1_2 = True;
action_requested = True;
continue;
}
if (!strcmp("--dpi", argv[i]))
{
char* strtod_error;
if (++i >= argc)
usage();
dpi = strtod(argv[i], &strtod_error);
if (argv[i] == strtod_error)
{
dpi = 0.0;
dpi_output = argv[i];
}
setit_1_2 = True;
action_requested = True;
continue;
}
if (!strcmp("--auto", argv[i]))
{
if (output)
{
output->automatic = True;
output->changes |= changes_automatic;
}
else
automatic = True;
setit_1_2 = True;
action_requested = True;
continue;
}
if (!strcmp("--q12", argv[i]))
{
query_1_2 = True;
continue;
}
if (!strcmp("--q1", argv[i]))
{
query_1 = True;
continue;
}
if (!strcmp("--newmode", argv[i]))
{
umode_t* m = malloc(sizeof(umode_t));
double clock;
++i;
if (i + 9 >= argc)
usage();
m->mode.name = argv[i];
m->mode.nameLength = strlen(argv[i]);
i++;
clock = check_strtod(argv[i++]);
m->mode.dotClock = clock * 1e6;
m->mode.width = check_strtol(argv[i++]);
m->mode.hSyncStart = check_strtol(argv[i++]);
m->mode.hSyncEnd = check_strtol(argv[i++]);
m->mode.hTotal = check_strtol(argv[i++]);
m->mode.height = check_strtol(argv[i++]);
m->mode.vSyncStart = check_strtol(argv[i++]);
m->mode.vSyncEnd = check_strtol(argv[i++]);
m->mode.vTotal = check_strtol(argv[i++]);
m->mode.modeFlags = 0;
while (i < argc)
{
int f;
for (f = 0; mode_flags[f].string; f++)
if (!strcasecmp(mode_flags[f].string, argv[i]))
break;
if (!mode_flags[f].string)
break;
m->mode.modeFlags |= mode_flags[f].flag;
i++;
}
m->next = umodes;
m->action = umode_create;
umodes = m;
modeit = True;
action_requested = True;
continue;
}
if (!strcmp("--rmmode", argv[i]))
{
umode_t* m = malloc(sizeof(umode_t));
if (++i >= argc)
usage();
set_name(&m->name, argv[i], name_string | name_xid);
m->action = umode_destroy;
m->next = umodes;
umodes = m;
modeit = True;
action_requested = True;
continue;
}
if (!strcmp("--addmode", argv[i]))
{
umode_t* m = malloc(sizeof(umode_t));
if (++i >= argc)
usage();
set_name(&m->output, argv[i], name_string | name_xid);
if (++i >= argc)
usage();
set_name(&m->name, argv[i], name_string | name_xid);
m->action = umode_add;
m->next = umodes;
umodes = m;
modeit = True;
action_requested = True;
continue;
}
if (!strcmp("--delmode", argv[i]))
{
umode_t* m = malloc(sizeof(umode_t));
if (++i >= argc)
usage();
set_name(&m->output, argv[i], name_string | name_xid);
if (++i >= argc)
usage();
set_name(&m->name, argv[i], name_string | name_xid);
m->action = umode_delete;
m->next = umodes;
umodes = m;
modeit = True;
action_requested = True;
continue;
}
usage();
}
if (!action_requested)
query = True;
if (verbose)
{
query = True;
if (setit && !setit_1_2)
query_1 = True;
}
/*
if (version)
printf("xrandr program version " VERSION "\n");
*/
dpy = XOpenDisplay(display_name);
if (dpy == NULL)
{
fprintf(stderr, "Can't open display %s\n", XDisplayName(display_name));
exit(1);
}
if (screen < 0)
screen = DefaultScreen(dpy);
if (screen >= ScreenCount(dpy))
{
fprintf(stderr, "Invalid screen number %d (display has %d)\n", screen, ScreenCount(dpy));
exit(1);
}
root = RootWindow(dpy, screen);
if (!XRRQueryExtension(dpy, &event_base, &error_base) || !XRRQueryVersion(dpy, &major, &minor))
{
fprintf(stderr, "RandR extension missing\n");
exit(1);
}
if (major > 1 || (major == 1 && minor >= 2))
has_1_2 = True;
if (major > 1 || (major == 1 && minor >= 3))
has_1_3 = True;
if (has_1_2 && modeit)
{
umode_t* m;
get_screen(current);
get_crtcs();
get_outputs();
for (m = umodes; m; m = m->next)
{
XRRModeInfo* e;
output_t* o;
switch (m->action)
{
case umode_create:
XRRCreateMode(dpy, root, &m->mode);
break;
case umode_destroy:
e = find_mode(&m->name, 0);
if (!e)
fatal("cannot find mode \"%s\"\n", m->name.string);
XRRDestroyMode(dpy, e->id);
break;
case umode_add:
o = find_output(&m->output);
if (!o)
fatal("cannot find output \"%s\"\n", m->output.string);
e = find_mode(&m->name, 0);
if (!e)
fatal("cannot find mode \"%s\"\n", m->name.string);
XRRAddOutputMode(dpy, o->output.xid, e->id);
break;
case umode_delete:
o = find_output(&m->output);
if (!o)
fatal("cannot find output \"%s\"\n", m->output.string);
e = find_mode(&m->name, 0);
if (!e)
fatal("cannot find mode \"%s\"\n", m->name.string);
XRRDeleteOutputMode(dpy, o->output.xid, e->id);
break;
}
}
if (!setit_1_2)
{
XSync(dpy, False);
exit(0);
}
}
if (has_1_2 && propit)
{
get_screen(current);
get_crtcs();
get_outputs();
for (output = outputs; output; output = output->next)
{
output_prop_t* prop;
for (prop = output->props; prop; prop = prop->next)
{
Atom name = XInternAtom(dpy, prop->name, False);
Atom type;
int format = 0;
unsigned char* data;
int nelements;
int int_value;
unsigned long ulong_value;
unsigned char* prop_data;
int actual_format;
unsigned long nitems, bytes_after;
Atom actual_type;
XRRPropertyInfo* propinfo;
type = AnyPropertyType;
if (XRRGetOutputProperty(dpy, output->output.xid, name, 0, 100, False, False,
AnyPropertyType, &actual_type, &actual_format, &nitems,
&bytes_after, &prop_data) == Success &&
(propinfo = XRRQueryOutputProperty(dpy, output->output.xid, name)))
{
type = actual_type;
format = actual_format;
}
if ((type == XA_INTEGER || type == AnyPropertyType) &&
(sscanf(prop->value, "%d", &int_value) == 1 ||
sscanf(prop->value, "0x%x", &int_value) == 1))
{
type = XA_INTEGER;
ulong_value = int_value;
data = (unsigned char*)&ulong_value;
nelements = 1;
format = 32;
}
else if (type == XA_ATOM)
{
ulong_value = XInternAtom(dpy, prop->value, False);
data = (unsigned char*)&ulong_value;
nelements = 1;
}
else if ((type == XA_STRING || type == AnyPropertyType))
{
type = XA_STRING;
data = (unsigned char*)prop->value;
nelements = strlen(prop->value);
format = 8;
}
else
continue;
XRRChangeOutputProperty(dpy, output->output.xid, name, type, format, PropModeReplace, data,
nelements);
}
}
if (!setit_1_2)
{
XSync(dpy, False);
exit(0);
}
}
if (setit_1_2)
{
get_screen(current);
get_crtcs();
get_outputs();
set_positions();
set_screen_size();
pick_crtcs();
/*
* Assign outputs to crtcs
*/
set_crtcs();
/*
* Mark changing crtcs
*/
mark_changing_crtcs();
/*
* If an output was specified to track dpi, use it
*/
if (dpi_output)
{
output_t* output = find_output_by_name(dpi_output);
XRROutputInfo* output_info;
XRRModeInfo* mode_info;
if (!output)
fatal("Cannot find output %s\n", dpi_output);
output_info = output->output_info;
mode_info = output->mode_info;
if (output_info && mode_info && output_info->mm_height)
{
/*
* When this output covers the whole screen, just use
* the known physical size
*/
if ((unsigned int)fb_width == mode_info->width &&
(unsigned int)fb_height == mode_info->height)
{
fb_width_mm = output_info->mm_width;
fb_height_mm = output_info->mm_height;
}
else
{
dpi = (25.4 * mode_info->height) / output_info->mm_height;
}
}
}
/*
* Compute physical screen size
*/
if (fb_width_mm == 0 || fb_height_mm == 0)
{
if (fb_width != DisplayWidth(dpy, screen) || fb_height != DisplayHeight(dpy, screen) ||
dpi != 0.0)
{
if (dpi <= 0)
dpi = (25.4 * DisplayHeight(dpy, screen)) / DisplayHeightMM(dpy, screen);
fb_width_mm = (25.4 * fb_width) / dpi;
fb_height_mm = (25.4 * fb_height) / dpi;
}
else
{
fb_width_mm = DisplayWidthMM(dpy, screen);
fb_height_mm = DisplayHeightMM(dpy, screen);
}
}
/*
* Set panning
*/
set_panning();
/*
* Set gamma on crtc's that belong to the outputs.
*/
set_gamma();
/*
* Now apply all of the changes
*/
apply();
XSync(dpy, False);
exit(0);
}
if (query_1_2 || (query && has_1_2 && !query_1))
{
output_t* output;
#define ModeShown 0x80000000
get_screen(current);
get_crtcs();
get_outputs();
printf("<screen id=\"%d\" minimum_w=\"%d\" minimum_h=\"%d\" current_w=\"%d\" current_h=\"%d\" "
"maximum_w=\"%d\" maximum_h=\"%d\">\n",
screen, minWidth, minHeight, DisplayWidth(dpy, screen), DisplayHeight(dpy, screen),
maxWidth, maxHeight);
for (output = outputs; output; output = output->next)
{
XRROutputInfo* output_info = output->output_info;
crtc_t* crtc = output->crtc_info;
XRRCrtcInfo* crtc_info = crtc ? crtc->crtc_info : NULL;
XRRModeInfo* mode = output->mode_info;
Atom* props;
int j, k, nprop;
Bool* mode_shown;
// Rotation rotations = output_rotations (output);
printf(" <output name=\"%s\" connected=\"%s\"", output_info->name,
connection[output_info->connection]);
if (mode)
{
if (crtc_info)
{
printf(" w=\"%d\" h=\"%d\" x=\"%d\" y=\"%d\" crtc=\"%d\"", crtc_info->width,
crtc_info->height, crtc_info->x, crtc_info->y, crtc->crtc.index);
}
else
{
printf(" w=\"%d\" h=\"%d\" x=\"%d\" y=\"%d\"", mode->width, mode->height, output->x,
output->y);
}
if (verbose)
printf(" id=\"%lx\"", mode->id);
if (output->rotation != RR_Rotate_0 || verbose)
{
printf(" rotation=\"%s\"", rotation_name(output->rotation));
if (output->rotation & (RR_Reflect_X | RR_Reflect_Y))
printf(" reflection=\"%s\"", reflection_name(output->rotation));
}
}
/*
if (rotations != RR_Rotate_0 || verbose)
{
Bool first = True;
printf (" (");
for (i = 0; i < 4; i ++) {
if ((rotations >> i) & 1) {
if (!first) printf (" "); first = False;
printf("%s", direction[i]);
}
}
if (rotations & RR_Reflect_X)
{
if (!first) printf (" "); first = False;
printf ("x axis");
}
if (rotations & RR_Reflect_Y)
{
if (!first) printf (" ");
printf ("y axis");
}
printf (")");
}
*/
if (mode)
{
printf(" wmm=\"%d\" hmm=\"%d\"", (int)output_info->mm_width, (int)output_info->mm_height);
}
if (crtc && crtc->panning_info && crtc->panning_info->width > 0)
{
XRRPanning* pan = crtc->panning_info;
printf(" panning %dx%d+%d+%d", pan->width, pan->height, pan->left, pan->top);
if ((pan->track_width != 0 &&
(pan->track_left != pan->left || pan->track_width != pan->width ||
pan->border_left != 0 || pan->border_right != 0)) ||
(pan->track_height != 0 &&
(pan->track_top != pan->top || pan->track_height != pan->height ||
pan->border_top != 0 || pan->border_bottom != 0)))
printf(" tracking %dx%d+%d+%d border %d/%d/%d/%d", pan->track_width, pan->track_height,
pan->track_left, pan->track_top, pan->border_left, pan->border_top,
pan->border_right, pan->border_bottom);
}
printf(">\n");
if (verbose)
{
printf("\tIdentifier: 0x%x\n", (int)output->output.xid);
printf("\tTimestamp: %d\n", (int)output_info->timestamp);
printf("\tSubpixel: %s\n", order[output_info->subpixel_order]);
if (output->gamma.red != 0.0f && output->gamma.green != 0.0f && output->gamma.blue != 0.0f)
{
printf("\tGamma: %#.2g:%#.2g:%#.2g\n", (double)output->gamma.red,
(double)output->gamma.green, (double)output->gamma.blue);
printf("\tBrightness: %#.2g\n", (double)output->brightness);
}
printf("\tClones: ");
for (j = 0; j < output_info->nclone; j++)
{
output_t* clone = find_output_by_xid(output_info->clones[j]);
if (clone)
printf(" %s", clone->output.string);
}
printf("\n");
if (output->crtc_info)
printf("\tCRTC: %d\n", output->crtc_info->crtc.index);
printf("\tCRTCs: ");
for (j = 0; j < output_info->ncrtc; j++)
{
crtc_t* crtc = find_crtc_by_xid(output_info->crtcs[j]);
if (crtc)
printf(" %d", crtc->crtc.index);
}
printf("\n");
if (output->crtc_info && output->crtc_info->panning_info)
{
XRRPanning* pan = output->crtc_info->panning_info;
printf("\tPanning: %dx%d+%d+%d\n", pan->width, pan->height, pan->left, pan->top);
printf("\tTracking: %dx%d+%d+%d\n", pan->track_width, pan->track_height,
pan->track_left, pan->track_top);
printf("\tBorder: %d/%d/%d/%d\n", pan->border_left, pan->border_top,
pan->border_right, pan->border_bottom);
}
}
if (verbose)
{
int x, y;
printf("\tTransform: ");
for (y = 0; y < 3; y++)
{
for (x = 0; x < 3; x++)
printf(" %f", XFixedToDouble(output->transform.transform.matrix[y][x]));
if (y < 2)
printf("\n\t ");
}
if (output->transform.filter)
printf("\n\t filter: %s", output->transform.filter);
printf("\n");
}
if (verbose || properties)
{
props = XRRListOutputProperties(dpy, output->output.xid, &nprop);
for (j = 0; j < nprop; j++)
{
unsigned char* prop;
int actual_format;
unsigned long nitems, bytes_after;
Atom actual_type;
XRRPropertyInfo* propinfo;
XRRGetOutputProperty(dpy, output->output.xid, props[j], 0, 100, False, False,
AnyPropertyType, &actual_type, &actual_format, &nitems, &bytes_after,
&prop);
propinfo = XRRQueryOutputProperty(dpy, output->output.xid, props[j]);
if (actual_type == XA_INTEGER && actual_format == 8)
{
int k;
printf("\t%s:\n", XGetAtomName(dpy, props[j]));
for (k = 0; k < (long)nitems; k++)
{
if (k % 16 == 0)
printf("\t\t");
printf("%02x", (unsigned char)prop[k]);
if (k % 16 == 15)
printf("\n");
}
}
else if (actual_type == XA_INTEGER && actual_format == 32)
{
printf("\t%s: ", XGetAtomName(dpy, props[j]));
for (k = 0; k < (long)nitems; k++)
{
if (k > 0)
printf("\n\t\t\t");
printf("%d (0x%08x)", (int)((INT32*)prop)[k], (int)((INT32*)prop)[k]);
}
if (propinfo->range && propinfo->num_values > 0)
{
if (nitems > 1)
printf("\n\t\t");
printf("\trange%s: ", (propinfo->num_values == 2) ? "" : "s");
for (k = 0; k < propinfo->num_values / 2; k++)
printf(" (%d,%d)", (int)propinfo->values[k * 2], (int)propinfo->values[k * 2 + 1]);
}
printf("\n");
}
else if (actual_type == XA_ATOM && actual_format == 32)
{
printf("\t%s:", XGetAtomName(dpy, props[j]));
for (k = 0; k < (long)nitems; k++)
{
if (k > 0 && (k & 1) == 0)
printf("\n\t\t");
printf("\t%s", XGetAtomName(dpy, ((Atom*)prop)[k]));
}
if (!propinfo->range && propinfo->num_values > 0)
{
printf("\n\t\tsupported:");
for (k = 0; k < propinfo->num_values; k++)
{
printf(" %-12.12s", XGetAtomName(dpy, propinfo->values[k]));
if (k % 4 == 3 && k < propinfo->num_values - 1)
printf("\n\t\t ");
}
}
printf("\n");
}
else if (actual_format == 8)
{
printf("\t%s: %s%s\n", XGetAtomName(dpy, props[j]), prop, bytes_after ? "..." : "");
}
else
{
char* type = actual_type ? XGetAtomName(dpy, actual_type) : "none";
printf("\t%s: %s(%d) (format %d items %d) ????\n", XGetAtomName(dpy, props[j]), type,
(int)actual_type, actual_format, (int)nitems);
}
free(propinfo);
}
}
if (verbose)
{
for (j = 0; j < output_info->nmode; j++)
{
XRRModeInfo* mode = find_mode_by_xid(output_info->modes[j]);
int f;
printf(" %s (0x%x) %6.1fMHz", mode->name, (int)mode->id,
(double)mode->dotClock / 1000000.0);
for (f = 0; mode_flags[f].flag; f++)
if (mode->modeFlags & mode_flags[f].flag)
printf(" %s", mode_flags[f].string);
if (mode == output->mode_info)
printf(" *current");
if (j < output_info->npreferred)
printf(" +preferred");
printf("\n");
printf(" h: width %4d start %4d end %4d total %4d skew %4d clock %6.1fKHz\n",
mode->width, mode->hSyncStart, mode->hSyncEnd, mode->hTotal, mode->hSkew,
mode_hsync(mode) / 1000);
printf(" v: height %4d start %4d end %4d total %4d clock %6.1fHz\n",
mode->height, mode->vSyncStart, mode->vSyncEnd, mode->vTotal, mode_refresh(mode));
mode->modeFlags |= ModeShown;
}
}
else
{
mode_shown = calloc(output_info->nmode, sizeof(Bool));
if (!mode_shown)
fatal("out of memory\n");
for (j = 0; j < output_info->nmode; j++)
{
XRRModeInfo *jmode, *kmode;
if (mode_shown[j])
continue;
jmode = find_mode_by_xid(output_info->modes[j]);
for (k = j; k < output_info->nmode; k++)
{
if (mode_shown[k])
continue;
kmode = find_mode_by_xid(output_info->modes[k]);
if (strcmp(jmode->name, kmode->name) != 0)
continue;
mode_shown[k] = True;
kmode->modeFlags |= ModeShown;
printf(" <mode id=\"0x%lx\" name=\"%s\" w=\"%d\" h=\"%d\" hz=\"%.5f\"", kmode->id,
kmode->name, kmode->width, kmode->height, mode_refresh(kmode));
if (kmode == output->mode_info)
printf(" current=\"true\"");
else
printf(" current=\"false\"");
if (k < output_info->npreferred)
printf(" preferred=\"true\"");
else
printf(" preferred=\"false\"");
printf("/>\n");
}
}
free(mode_shown);
}
printf(" </output>\n");
}
/*
for (m = 0; m < res->nmode; m++)
{
XRRModeInfo *mode = &res->modes[m];
if (!(mode->modeFlags & ModeShown))
{
printf (" %s (0x%x) %6.1fMHz\n",
mode->name, (int)mode->id,
(double)mode->dotClock / 1000000.0);
printf (" h: width %4d start %4d end %4d total %4d skew %4d clock %6.1fKHz\n",
mode->width, mode->hSyncStart, mode->hSyncEnd,
mode->hTotal, mode->hSkew, mode_hsync (mode) / 1000);
printf (" v: height %4d start %4d end %4d total %4d clock %6.1fHz\n",
mode->height, mode->vSyncStart, mode->vSyncEnd, mode->vTotal,
mode_refresh (mode));
}
}
*/
printf("</screen>\n");
exit(0);
}
sc = XRRGetScreenInfo(dpy, root);
if (sc == NULL)
exit(1);
current_size = XRRConfigCurrentConfiguration(sc, &current_rotation);
sizes = XRRConfigSizes(sc, &nsize);
if (have_pixel_size)
{
for (size = 0; size < nsize; size++)
{
if (sizes[size].width == width && sizes[size].height == height)
break;
}
if (size >= nsize)
{
fprintf(stderr, "Size %dx%d not found in available modes\n", width, height);
exit(1);
}
}
else if (size < 0)
size = current_size;
else if (size >= nsize)
{
fprintf(stderr, "Size index %d is too large, there are only %d sizes\n", size, nsize);
exit(1);
}
if (rot < 0)
{
for (rot = 0; rot < 4; rot++)
if (1 << rot == (current_rotation & 0xf))
break;
}
current_rate = XRRConfigCurrentRate(sc);
if (rate < 0)
{
if (size == current_size)
rate = current_rate;
else
rate = 0;
}
else
{
rates = XRRConfigRates(sc, size, &nrate);
for (i = 0; i < nrate; i++)
if (rate == rates[i])
break;
if (i == nrate)
{
fprintf(stderr, "Rate %.1f Hz not available for this size\n", rate);
exit(1);
}
}
if (version)
{
int major_version, minor_version;
XRRQueryVersion(dpy, &major_version, &minor_version);
printf("Server reports RandR version %d.%d\n", major_version, minor_version);
}
if (query || query_1)
{
printf(" SZ: Pixels Physical Refresh\n");
for (i = 0; i < nsize; i++)
{
printf("%c%-2d %5d x %-5d (%4dmm x%4dmm )", i == current_size ? '*' : ' ', i, sizes[i].width,
sizes[i].height, sizes[i].mwidth, sizes[i].mheight);
rates = XRRConfigRates(sc, i, &nrate);
if (nrate)
printf(" ");
for (j = 0; j < nrate; j++)
printf("%c%-4d", i == current_size && rates[j] == current_rate ? '*' : ' ', rates[j]);
printf("\n");
}
}
rotations = XRRConfigRotations(sc, &current_rotation);
rotation = 1 << rot;
if (query)
{
printf("Current rotation - %s\n", rotation_name(current_rotation));
printf("Current reflection - %s\n", reflection_name(current_rotation));
printf("Rotations possible - ");
for (i = 0; i < 4; i++)
{
if ((rotations >> i) & 1)
printf("%s ", direction[i]);
}
printf("\n");
printf("Reflections possible - ");
if (rotations & (RR_Reflect_X | RR_Reflect_Y))
{
if (rotations & RR_Reflect_X)
printf("X Axis ");
if (rotations & RR_Reflect_Y)
printf("Y Axis");
}
else
printf("none");
printf("\n");
}
if (verbose)
{
printf("Setting size to %d, rotation to %s\n", size, direction[rot]);
printf("Setting reflection on ");
if (reflection)
{
if (reflection & RR_Reflect_X)
printf("X Axis ");
if (reflection & RR_Reflect_Y)
printf("Y Axis");
}
else
printf("neither axis");
printf("\n");
if (reflection & RR_Reflect_X)
printf("Setting reflection on X axis\n");
if (reflection & RR_Reflect_Y)
printf("Setting reflection on Y axis\n");
}
/* we should test configureNotify on the root window */
XSelectInput(dpy, root, StructureNotifyMask);
if (setit && !dryrun)
XRRSelectInput(dpy, root, RRScreenChangeNotifyMask);
if (setit && !dryrun)
status = XRRSetScreenConfigAndRate(dpy, sc, root, (SizeID)size,
(Rotation)(rotation | reflection), rate, CurrentTime);
if (setit && !dryrun && status == RRSetConfigFailed)
{
printf("Failed to change the screen configuration!\n");
ret = 1;
}
if (verbose && setit && !dryrun && size != current_size)
{
if (status == RRSetConfigSuccess)
{
Bool seen_screen = False;
while (!seen_screen)
{
int spo;
XNextEvent(dpy, (XEvent*)&event);
printf("Event received, type = %d\n", event.type);
/* update Xlib's knowledge of the event */
XRRUpdateConfiguration((XEvent*)&event);
if (event.type == ConfigureNotify)
printf("Received ConfigureNotify Event!\n");
switch (event.type - event_base)
{
case RRScreenChangeNotify:
sce = (XRRScreenChangeNotifyEvent*)&event;
printf("Got a screen change notify event!\n");
printf(" window = %d\n root = %d\n size_index = %d\n rotation %d\n", (int)sce->window,
(int)sce->root, sce->size_index, sce->rotation);
printf(" timestamp = %ld, config_timestamp = %ld\n", sce->timestamp,
sce->config_timestamp);
printf(" Rotation = %x\n", sce->rotation);
printf(" %d X %d pixels, %d X %d mm\n", sce->width, sce->height, sce->mwidth,
sce->mheight);
printf("Display width %d, height %d\n", DisplayWidth(dpy, screen),
DisplayHeight(dpy, screen));
printf("Display widthmm %d, heightmm %d\n", DisplayWidthMM(dpy, screen),
DisplayHeightMM(dpy, screen));
spo = sce->subpixel_order;
if ((spo < 0) || (spo > 5))
printf("Unknown subpixel order, value = %d\n", spo);
else
printf("new Subpixel rendering model is %s\n", order[spo]);
seen_screen = True;
break;
default:
if (event.type != ConfigureNotify)
printf("unknown event received, type = %d!\n", event.type);
}
}
}
}
XRRFreeScreenConfigInfo(sc);
return (ret);
}