## Summary
I always found it odd that we had to pass this in, since it's really
higher-level context for the error. The awkwardness is further evidenced
by the fact that we pass in fake values everywhere (even outside of
tests). The source path isn't actually used to display the error; it's
only accessed elsewhere to _re-display_ the error in certain cases. This
PR modifies to instead pass the path directly in those cases.
## Summary
Given:
```python
from somewhere import get_cfg
def lookup_cfg(cfg_description):
cfg = get_cfg(cfg_description)
if cfg is not None:
return cfg
raise AttributeError(f"No cfg found matching {cfg_description}")
```
We were analyzing the method from last-to-first statement. So we saw the
`raise`, then assumed the method _always_ raised. In reality, though, it
_might_ return. This PR improves the branch analysis to respect these
mixed cases.
Closes https://github.com/astral-sh/ruff/issues/9269.
Closes https://github.com/astral-sh/ruff/issues/9304.
## Summary
Adds a rule to detect unions that include `typing.NoReturn` or
`typing.Never`. In such cases, the use of the bottom type is redundant.
Closes https://github.com/astral-sh/ruff/issues/9113.
## Test Plan
`cargo test`
## Summary
Given a function like:
```python
def func(x: int):
if not x:
raise ValueError
else:
raise TypeError
```
We now correctly use `NoReturn` as the return type, rather than `None`.
Closes https://github.com/astral-sh/ruff/issues/9201.
This PR adds a `as_slice` method to all the string nodes which returns
all the parts of the nodes as a slice. This will be useful in the next
PR to split the string formatting to use this method to extract the
_single node_ or _implicitly concanated nodes_.
## Summary
This PR introduces a new `StringLike` enum which is a narrow type to
indicate string-like nodes. These includes the string literals, bytes
literals, and the literal parts of f-strings.
The main motivation behind this is to avoid repetition of rule calling
in the AST checker. We add a new `analyze::string_like` function which
takes in the enum and calls all the respective rule functions which
expects atleast 2 of the variants of this enum.
I'm open to discarding this if others think it's not that useful at this
stage as currently only 3 rules require these nodes.
As suggested
[here](https://github.com/astral-sh/ruff/pull/8835#discussion_r1414746934)
and
[here](https://github.com/astral-sh/ruff/pull/8835#discussion_r1414750204).
## Test Plan
`cargo test`
Rebase of #6365 authored by @davidszotten.
## Summary
This PR updates the AST structure for an f-string elements.
The main **motivation** behind this change is to have a dedicated node
for the string part of an f-string. Previously, the existing
`ExprStringLiteral` node was used for this purpose which isn't exactly
correct. The `ExprStringLiteral` node should include the quotes as well
in the range but the f-string literal element doesn't include the quote
as it's a specific part within an f-string. For example,
```python
f"foo {x}"
# ^^^^
# This is the literal part of an f-string
```
The introduction of `FStringElement` enum is helpful which represent
either the literal part or the expression part of an f-string.
### Rule Updates
This means that there'll be two nodes representing a string depending on
the context. One for a normal string literal while the other is a string
literal within an f-string. The AST checker is updated to accommodate
this change. The rules which work on string literal are updated to check
on the literal part of f-string as well.
#### Notes
1. The `Expr::is_literal_expr` method would check for
`ExprStringLiteral` and return true if so. But now that we don't
represent the literal part of an f-string using that node, this improves
the method's behavior and confines to the actual expression. We do have
the `FStringElement::is_literal` method.
2. We avoid checking if we're in a f-string context before adding to
`string_type_definitions` because the f-string literal is now a
dedicated node and not part of `Expr`.
3. Annotations cannot use f-string so we avoid changing any rules which
work on annotation and checks for `ExprStringLiteral`.
## Test Plan
- All references of `Expr::StringLiteral` were checked to see if any of
the rules require updating to account for the f-string literal element
node.
- New test cases are added for rules which check against the literal
part of an f-string.
- Check the ecosystem results and ensure it remains unchanged.
## Performance
There's a performance penalty in the parser. The reason for this remains
unknown as it seems that the generated assembly code is now different
for the `__reduce154` function. The reduce function body is just popping
the `ParenthesizedExpr` on top of the stack and pushing it with the new
location.
- The size of `FStringElement` enum is the same as `Expr` which is what
it replaces in `FString::format_spec`
- The size of `FStringExpressionElement` is the same as
`ExprFormattedValue` which is what it replaces
I tried reducing the `Expr` enum from 80 bytes to 72 bytes but it hardly
resulted in any performance gain. The difference can be seen here:
- Original profile: https://share.firefox.dev/3Taa7ES
- Profile after boxing some node fields:
https://share.firefox.dev/3GsNXpD
### Backtracking
I tried backtracking the changes to see if any of the isolated change
produced this regression. The problem here is that the overall change is
so small that there's only a single checkpoint where I can backtrack and
that checkpoint results in the same regression. This checkpoint is to
revert using `Expr` to the `FString::format_spec` field. After this
point, the change would revert back to the original implementation.
## Review process
The review process is similar to #7927. The first set of commits update
the node structure, parser, and related AST files. Then, further commits
update the linter and formatter part to account for the AST change.
---------
Co-authored-by: David Szotten <davidszotten@gmail.com>
## Summary
Adds detection for branches without a `return` or `raise`, so that we
can properly `Optional` the return types. I'd like to remove this and
replace it with our code graph analysis from the `unreachable.rs` rule,
but it at least fixes the worst offenders.
Closes#8942.
## Summary
This PR updates the `E402` rule to work at cell level for Jupyter
notebooks. This is enabled only in preview to gather feedback.
The implementation basically resets the import boundary flag on the
semantic model when we encounter the first statement in a cell.
Another potential solution is to introduce `E403` rule that is
specifically for notebooks that works at cell level while `E402` will be
disabled for notebooks.
## Test Plan
Add a notebook with imports in multiple cells and verify that the rule
works as expected.
resolves: #8669
## Summary
This PR is a follow-up to the AST refactor which does the following:
- Remove `Deref` implementation on `StringLiteralValue` and use explicit
`as_str` calls instead. The `Deref` implementation would implicitly
perform allocations in case of implicitly concatenated strings. This is
to make sure the allocation is explicit.
- Now, certain methods can be implemented to do zero allocations which
have been implemented in this PR. They are:
- `is_empty`
- `len`
- `chars`
- Custom `PartialEq` implementation to compare each character
## Test Plan
Run the linter test suite and make sure all tests pass.
## Summary
This PR updates the string nodes (`ExprStringLiteral`,
`ExprBytesLiteral`, and `ExprFString`) to account for implicit string
concatenation.
### Motivation
In Python, implicit string concatenation are joined while parsing
because the interpreter doesn't require the information for each part.
While that's feasible for an interpreter, it falls short for a static
analysis tool where having such information is more useful. Currently,
various parts of the code uses the lexer to get the individual string
parts.
One of the main challenge this solves is that of string formatting.
Currently, the formatter relies on the lexer to get the individual
string parts, and formats them including the comments accordingly. But,
with PEP 701, f-string can also contain comments. Without this change,
it becomes very difficult to add support for f-string formatting.
### Implementation
The initial proposal was made in this discussion:
https://github.com/astral-sh/ruff/discussions/6183#discussioncomment-6591993.
There were various AST designs which were explored for this task which
are available in the linked internal document[^1].
The selected variant was the one where the nodes were kept as it is
except that the `implicit_concatenated` field was removed and instead a
new struct was added to the `Expr*` struct. This would be a private
struct would contain the actual implementation of how the AST is
designed for both single and implicitly concatenated strings.
This implementation is achieved through an enum with two variants:
`Single` and `Concatenated` to avoid allocating a vector even for single
strings. There are various public methods available on the value struct
to query certain information regarding the node.
The nodes are structured in the following way:
```
ExprStringLiteral - "foo" "bar"
|- StringLiteral - "foo"
|- StringLiteral - "bar"
ExprBytesLiteral - b"foo" b"bar"
|- BytesLiteral - b"foo"
|- BytesLiteral - b"bar"
ExprFString - "foo" f"bar {x}"
|- FStringPart::Literal - "foo"
|- FStringPart::FString - f"bar {x}"
|- StringLiteral - "bar "
|- FormattedValue - "x"
```
[^1]: Internal document:
https://www.notion.so/astral-sh/Implicit-String-Concatenation-e036345dc48943f89e416c087bf6f6d9?pvs=4
#### Visitor
The way the nodes are structured is that the entire string, including
all the parts that are implicitly concatenation, is a single node
containing individual nodes for the parts. The previous section has a
representation of that tree for all the string nodes. This means that
new visitor methods are added to visit the individual parts of string,
bytes, and f-strings for `Visitor`, `PreorderVisitor`, and
`Transformer`.
## Test Plan
- `cargo insta test --workspace --all-features --unreferenced reject`
- Verify that the ecosystem results are unchanged
Update to [Rust
1.74](https://blog.rust-lang.org/2023/11/16/Rust-1.74.0.html) and use
the new clippy lints table.
The update itself introduced a new clippy lint about superfluous hashes
in raw strings, which got removed.
I moved our lint config from `rustflags` to the newly stabilized
[workspace.lints](https://doc.rust-lang.org/stable/cargo/reference/workspaces.html#the-lints-table).
One consequence is that we have to `unsafe_code = "warn"` instead of
"forbid" because the latter now actually bans unsafe code:
```
error[E0453]: allow(unsafe_code) incompatible with previous forbid
--> crates/ruff_source_file/src/newlines.rs:62:17
|
62 | #[allow(unsafe_code)]
| ^^^^^^^^^^^ overruled by previous forbid
|
= note: `forbid` lint level was set on command line
```
---------
Co-authored-by: Charlie Marsh <charlie.r.marsh@gmail.com>
## Summary
This PR adds (unsafe) fixes to the flake8-annotations rules that enforce
missing return types, offering to automatically insert type annotations
for functions with literal return values. The logic is smart enough to
generate simplified unions (e.g., `float` instead of `int | float`) and
deal with implicit returns (`return` without a value).
Closes https://github.com/astral-sh/ruff/issues/1640 (though we could
open a separate issue for referring parameter types).
Closes https://github.com/astral-sh/ruff/issues/8213.
## Test Plan
`cargo test`
## Summary
This PR implements validation in the formatter tests to ensure that we
don't modify the AST during formatting. Black has similar logic.
In implementing this, I learned that Black actually _does_ modify the
AST, and their test infrastructure normalizes the AST to wipe away those
differences. Specifically, Black changes the indentation of docstrings,
which _does_ modify the AST; and it also inserts parentheses in `del`
statements, which changes the AST too.
Ruff also does both these things, so we _also_ implement the same
normalization using a new visitor that allows for modifying the AST.
Closes https://github.com/astral-sh/ruff/issues/8184.
## Test Plan
`cargo test`
## Summary
Adds an extra check to F632 to check for any `is` comparisons to a
mutable initialisers.
Implements #8589 .
Example:
```Python
named_var = {}
if named_var is {}: # F632 (fix)
pass
```
The if condition will always evaluate to False because it checks on
identity and it's impossible to take the same identity as a hard coded
list/set/dict initializer.
## Test Plan
Multiple test cases were added to ensure the rule works + doesn't flag
false positives + the fix works correctly.
## Summary
Adds `TRIO105` from the [flake8-trio
plugin](https://github.com/Zac-HD/flake8-trio). The `MethodName` logic
mirrors that of `TRIO100` to stay consistent within the plugin.
It is at 95% parity with the exception of upstream also checking for a
slightly more complex scenario where a call to `start()` on a
`trio.Nursery` context should also be immediately awaited. Upstream
plugin appears to just check for anything named `nursery` judging from
[the relevant issue](https://github.com/Zac-HD/flake8-trio/issues/56).
Unsure if we want to do so something similar or, alternatively, if there
is some capability in ruff to check for calls made on this context some
other way
## Test Plan
Added a new fixture, based on [the one from upstream
plugin](https://github.com/Zac-HD/flake8-trio/blob/main/tests/eval_files/trio105.py)
## Issue link
Refers: https://github.com/astral-sh/ruff/issues/8451
## Summary
This PR removes the `unicode` flag from the string literal in
`ComparableExpr`. This flag isn't required as all strings are unicode in
Python 3 so `"foo" == u"foo"`.
## Summary
This PR adds a new `LiteralExpressionRef` which wraps all of the literal
expression nodes in a single enum. This allows for a narrow type when
working exclusively with a literal node. Additionally, it also
implements a `Expr::as_literal_expr` method to return the new enum if
the expression is indeed a literal one.
A few rules have been updated to account for the new enum:
1. `redundant_literal_union`
2. `if_else_block_instead_of_dict_lookup`
3. `magic_value_comparison`
To account for the change in (2), a new `ComparableLiteral` has been
added which can be constructed from the new enum
(`ComparableLiteral::from(<LiteralExpressionRef>)`).
### Open Questions
1. The new `ComparableLiteral` can be exclusively used via the
`LiteralExpressionRef` enum. Should we remove all of the literal
variants from `ComparableExpr` and instead have a single
`ComparableExpr::Literal(ComparableLiteral)` variant instead?
## Test Plan
`cargo test`
## Summary
If the value of `shell` wasn't literally `True`, we now show a message
describing it as truthy, rather than the (misleading) `shell=True`
literal in the diagnostic.
Closes https://github.com/astral-sh/ruff/issues/8310.
## Summary
This PR adds `Default` for the following literal nodes:
* `StringLiteral`
* `BytesLiteral`
* `BooleanLiteral`
* `NoneLiteral`
* `EllipsisLiteral`
The implementation creates the zero value of the respective literal
nodes in terms of the Python language.
## Test Plan
`cargo test`
## Summary
This PR splits the `Constant` enum as individual literal nodes. It
introduces the following new nodes for each variant:
* `ExprStringLiteral`
* `ExprBytesLiteral`
* `ExprNumberLiteral`
* `ExprBooleanLiteral`
* `ExprNoneLiteral`
* `ExprEllipsisLiteral`
The main motivation behind this refactor is to introduce the new AST
node for implicit string concatenation in the coming PR. The elements of
that node will be either a string literal, bytes literal or a f-string
which can be implemented using an enum. This means that a string or
bytes literal cannot be represented by `Constant::Str` /
`Constant::Bytes` which creates an inconsistency.
This PR avoids that inconsistency by splitting the constant nodes into
it's own literal nodes, literal being the more appropriate naming
convention from a static analysis tool perspective.
This also makes working with literals in the linter and formatter much
more ergonomic like, for example, if one would want to check if this is
a string literal, it can be done easily using
`Expr::is_string_literal_expr` or matching against `Expr::StringLiteral`
as oppose to matching against the `ExprConstant` and enum `Constant`. A
few AST helper methods can be simplified as well which will be done in a
follow-up PR.
This introduces a new `Expr::is_literal_expr` method which is the same
as `Expr::is_constant_expr`. There are also intermediary changes related
to implicit string concatenation which are quiet less. This is done so
as to avoid having a huge PR which this already is.
## Test Plan
1. Verify and update all of the existing snapshots (parser, visitor)
2. Verify that the ecosystem check output remains **unchanged** for both
the linter and formatter
### Formatter ecosystem check
#### `main`
| project | similarity index | total files | changed files |
|----------------|------------------:|------------------:|------------------:|
| cpython | 0.75803 | 1799 | 1647 |
| django | 0.99983 | 2772 | 34 |
| home-assistant | 0.99953 | 10596 | 186 |
| poetry | 0.99891 | 317 | 17 |
| transformers | 0.99966 | 2657 | 330 |
| twine | 1.00000 | 33 | 0 |
| typeshed | 0.99978 | 3669 | 20 |
| warehouse | 0.99977 | 654 | 13 |
| zulip | 0.99970 | 1459 | 22 |
#### `dhruv/constant-to-literal`
| project | similarity index | total files | changed files |
|----------------|------------------:|------------------:|------------------:|
| cpython | 0.75803 | 1799 | 1647 |
| django | 0.99983 | 2772 | 34 |
| home-assistant | 0.99953 | 10596 | 186 |
| poetry | 0.99891 | 317 | 17 |
| transformers | 0.99966 | 2657 | 330 |
| twine | 1.00000 | 33 | 0 |
| typeshed | 0.99978 | 3669 | 20 |
| warehouse | 0.99977 | 654 | 13 |
| zulip | 0.99970 | 1459 | 22 |
## Summary
This PR adds a new `Singleton` enum for the `PatternMatchSingleton`
node.
Earlier the node was using the `Constant` enum but the value for this
pattern can only be either `None`, `True` or `False`. With the coming PR
to remove the `Constant`, this node required a new type to fill in.
This also has the benefit of narrowing the type down to only the
possible values for the node as evident by the removal of `unreachable`.
## Test Plan
Update the AST snapshots and run `cargo test`.
<!--
Thank you for contributing to Ruff! To help us out with reviewing,
please consider the following:
- Does this pull request include a summary of the change? (See below.)
- Does this pull request include a descriptive title?
- Does this pull request include references to any relevant issues?
-->
## Summary
Fixes https://github.com/astral-sh/ruff/issues/7448
Fixes https://github.com/astral-sh/ruff/issues/7892
I've removed automatic dangling comment formatting, we're doing manual
dangling comment formatting everywhere anyway (the
assert-all-comments-formatted ensures this) and dangling comments would
break the formatting there.
## Test Plan
New test file.
---------
Co-authored-by: Micha Reiser <micha@reiser.io>
**Summary** Insert a newline after nested function and class
definitions, unless there is a trailing own line comment.
We need to e.g. format
```python
if platform.system() == "Linux":
if sys.version > (3, 10):
def f():
print("old")
else:
def f():
print("new")
f()
```
as
```python
if platform.system() == "Linux":
if sys.version > (3, 10):
def f():
print("old")
else:
def f():
print("new")
f()
```
even though `f()` is directly preceded by an if statement, not a
function or class definition. See the comments and fixtures for trailing
own line comment handling.
**Test Plan** I checked that the new content of `newlines.py` matches
black's formatting.
---------
Co-authored-by: Charlie Marsh <charlie.r.marsh@gmail.com>
## Summary
Implement
[`no-single-item-in`](https://github.com/dosisod/refurb/blob/master/refurb/checks/iterable/no_single_item_in.py)
as `single-item-membership-test` (`FURB171`).
Uses the helper function `generate_comparison` from the `pycodestyle`
implementations; this function should probably be moved, but I am not
sure where at the moment.
Update: moved it to `ruff_python_ast::helpers`.
Related to #1348.
## Test Plan
`cargo test`
## Summary
We now list each changed file when running with `--check`.
Closes https://github.com/astral-sh/ruff/issues/7782.
## Test Plan
```
❯ cargo run -p ruff_cli -- format foo.py --check
Compiling ruff_cli v0.0.292 (/Users/crmarsh/workspace/ruff/crates/ruff_cli)
rgo + Finished dev [unoptimized + debuginfo] target(s) in 1.41s
Running `target/debug/ruff format foo.py --check`
warning: `ruff format` is a work-in-progress, subject to change at any time, and intended only for experimentation.
Would reformat: foo.py
1 file would be reformatted
```
## Summary
When lexing a number like `0x995DC9BBDF1939FA` that exceeds our small
number representation, we were only storing the portion after the base
(in this case, `995DC9BBDF1939FA`). When using that representation in
code generation, this could lead to invalid syntax, since
`995DC9BBDF1939FA)` on its own is not a valid integer.
This PR modifies the code to store the full span, including the radix
prefix.
See:
https://github.com/astral-sh/ruff/issues/7455#issuecomment-1739802958.
## Test Plan
`cargo test`
## Summary
This PR adds support for named expressions when analyzing `__all__`
assignments, as per https://github.com/astral-sh/ruff/issues/7672. It
also loosens the enforcement around assignments like: `__all__ =
list(some_other_expression)`. We shouldn't flag these as invalid, even
though we can't analyze the members, since we _know_ they evaluate to a
`list`.
Closes https://github.com/astral-sh/ruff/issues/7672.
## Test Plan
`cargo test`
## Summary
This is a follow-up to #7469 that attempts to achieve similar gains, but
without introducing malachite. Instead, this PR removes the `BigInt`
type altogether, instead opting for a simple enum that allows us to
store small integers directly and only allocate for values greater than
`i64`:
```rust
/// A Python integer literal. Represents both small (fits in an `i64`) and large integers.
#[derive(Clone, PartialEq, Eq, Hash)]
pub struct Int(Number);
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub enum Number {
/// A "small" number that can be represented as an `i64`.
Small(i64),
/// A "large" number that cannot be represented as an `i64`.
Big(Box<str>),
}
impl std::fmt::Display for Number {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Number::Small(value) => write!(f, "{value}"),
Number::Big(value) => write!(f, "{value}"),
}
}
}
```
We typically don't care about numbers greater than `isize` -- our only
uses are comparisons against small constants (like `1`, `2`, `3`, etc.),
so there's no real loss of information, except in one or two rules where
we're now a little more conservative (with the worst-case being that we
don't flag, e.g., an `itertools.pairwise` that uses an extremely large
value for the slice start constant). For simplicity, a few diagnostics
now show a dedicated message when they see integers that are out of the
supported range (e.g., `outdated-version-block`).
An additional benefit here is that we get to remove a few dependencies,
especially `num-bigint`.
## Test Plan
`cargo test`
## Summary
This is only used for the `level` field in relative imports (e.g., `from
..foo import bar`). It seems unnecessary to use a wrapper here, so this
PR changes to a `u32` directly.
## Summary
If a function has no parameters (and no comments within the parameters'
`()`), we're supposed to wrap the return annotation _whenever_ it
breaks. However, our `empty_parameters` test didn't properly account for
the case in which the parameters include a newline (but no other
content), like:
```python
def get_dashboards_hierarchy(
) -> Dict[Type['BaseDashboard'], List[Type['BaseDashboard']]]:
"""Get hierarchy of dashboards classes.
Returns:
Dict of dashboards classes.
"""
dashboards_hierarchy = {}
```
This PR fixes that detection. Instead of lexing, it now checks if the
parameters itself is empty (or if it contains comments).
Closes https://github.com/astral-sh/ruff/issues/7457.
## Summary
The tokenizer was split into a forward and a backwards tokenizer. The
backwards tokenizer uses the same names as the forwards ones (e.g.
`next_token`). The backwards tokenizer gets the comment ranges that we
already built to skip comments.
---------
Co-authored-by: Micha Reiser <micha@reiser.io>
`ComparableExpr` includes the `ExprContext` field on an expression, so,
e.g., the two tuples in `(a, b) = (a, b)` won't be considered equal.
Similarly, the tuples in `[(a, b) for (a, b) in c]` _also_ wouldn't be
considered equal. I find this behavior surprising, since
`ComparableExpr` is intended to allow you to compare two ASTs, but
`ExprContext` is really encoding information about the broader context
for the expression.
## Motivation
The `ast::Arguments` for call argument are split into positional
arguments (args) and keywords arguments (keywords). We currently assume
that call consists of first args and then keywords, which is generally
the case, but not always:
```python
f(*args, a=2, *args2, **kwargs)
class A(*args, a=2, *args2, **kwargs):
pass
```
The consequence is accidentally reordering arguments
(https://github.com/astral-sh/ruff/pull/7268).
## Summary
`Arguments::args_and_keywords` returns an iterator of an `ArgOrKeyword`
enum that yields args and keywords in the correct order. I've fixed the
obvious `args` and `keywords` usages, but there might be some cases with
wrong assumptions remaining.
## Test Plan
The generator got new test cases, otherwise the stacked PR
(https://github.com/astral-sh/ruff/pull/7268) which uncovered this.
## Summary
This PR attempts to address a problem in the parser related to the
range's of `WithItem` nodes in certain contexts -- specifically,
`WithItem` nodes in parentheses that do not have an `as` token after
them.
For example,
[here](https://play.ruff.rs/71be2d0b-2a04-4c7e-9082-e72bff152679):
```python
with (a, b):
pass
```
The range of the `WithItem` `a` is set to the range of `(a, b)`, as is
the range of the `WithItem` `b`. In other words, when we have this kind
of sequence, we use the range of the entire parenthesized context,
rather than the ranges of the items themselves.
Note that this also applies to cases
[like](https://play.ruff.rs/c551e8e9-c3db-4b74-8cc6-7c4e3bf3713a):
```python
with (a, b, c as d):
pass
```
You can see the issue in the parser here:
```rust
#[inline]
WithItemsNoAs: Vec<ast::WithItem> = {
<location:@L> <all:OneOrMore<Test<"all">>> <end_location:@R> => {
all.into_iter().map(|context_expr| ast::WithItem { context_expr, optional_vars: None, range: (location..end_location).into() }).collect()
},
}
```
Fixing this issue is... very tricky. The naive approach is to use the
range of the `context_expr` as the range for the `WithItem`, but that
range will be incorrect when the `context_expr` is itself parenthesized.
For example, _that_ solution would fail here, since the range of the
first `WithItem` would be that of `a`, rather than `(a)`:
```python
with ((a), b):
pass
```
The `with` parsing in general is highly precarious due to ambiguities in
the grammar. Changing it in _any_ way seems to lead to an ambiguous
grammar that LALRPOP fails to translate. Consensus seems to be that we
don't really understand _why_ the current grammar works (i.e., _how_ it
avoids these ambiguities as-is).
The solution implemented here is to avoid changing the grammar itself,
and instead change the shape of the nodes returned by various rules in
the grammar. Specifically, everywhere that we return `Expr`, we instead
return `ParenthesizedExpr`, which includes a parenthesized range and the
underlying `Expr` itself. (If an `Expr` isn't parenthesized, the ranges
will be equivalent.) In `WithItemsNoAs`, we can then use the
parenthesized range as the range for the `WithItem`.
## Summary
This PR adds a higher-level enum (`SourceType`) around `PySourceType` to
allow us to use the same detection path to handle TOML files. Right now,
we have ad hoc `is_pyproject_toml` checks littered around, and some
codepaths are omitting that logic altogether (like `add_noqa`). Instead,
we should always be required to check the source type and handle TOML
files as appropriate.
This PR will also help with our pre-commit capabilities. If we add
`toml` to pre-commit (to support `pyproject.toml`), pre-commit will
start to pass _other_ files to Ruff (along with `poetry.lock` and
`Pipfile` -- see
[identify](b59996304f/identify/extensions.py (L355))).
By detecting those files and handling those cases, we avoid attempting
to parse them as Python files, which would lead to pre-commit errors.
(We tried to add `toml` to pre-commit here
(https://github.com/astral-sh/ruff-pre-commit/pull/44), but had to
revert here (https://github.com/astral-sh/ruff-pre-commit/pull/45) as it
led to the pre-commit hook attempting to parse `poetry.lock` files as
Python files.)
## Summary
The motivation here is that this enables us to implement `Ranged` in
crates that don't depend on `ruff_python_ast`.
Largely a mechanical refactor with a lot of regex, Clippy help, and
manual fixups.
## Test Plan
`cargo test`
## Summary
This PR introduces two new AST nodes to improve the representation of
`PatternMatchClass`. As a reminder, `PatternMatchClass` looks like this:
```python
case Point2D(0, 0, x=1, y=2):
...
```
Historically, this was represented as a vector of patterns (for the `0,
0` portion) and parallel vectors of keyword names (for `x` and `y`) and
values (for `1` and `2`). This introduces a bunch of challenges for the
formatter, but importantly, it's also really different from how we
represent similar nodes, like arguments (`func(0, 0, x=1, y=2)`) or
parameters (`def func(x, y)`).
So, firstly, we now use a single node (`PatternArguments`) for the
entire parenthesized region, making it much more consistent with our
other nodes. So, above, `PatternArguments` would be `(0, 0, x=1, y=2)`.
Secondly, we now have a `PatternKeyword` node for `x=1` and `y=2`. This
is much more similar to the how `Keyword` is represented within
`Arguments` for call expressions.
Closes https://github.com/astral-sh/ruff/issues/6866.
Closes https://github.com/astral-sh/ruff/issues/6880.
## Summary
Another drive-by change to remove unnecessary custom lexing. We just
need to know the parenthesized range, so we can use...
`parenthesized_range`. I've also updated `parenthesized_range` to
support nested parentheses.
## Test Plan
`cargo test`
## Summary
If a lambda doesn't contain any parameters, or any parameter _tokens_
(like `*`), we can use `None` for the parameters. This feels like a
better representation to me, since, e.g., what should the `TextRange` be
for a non-existent set of parameters? It also allows us to remove
several sites where we check if the `Parameters` is empty by seeing if
it contains any arguments, so semantically, we're already trying to
detect and model around this elsewhere.
Changing this also fixes a number of issues with dangling comments in
parameter-less lambdas, since those comments are now automatically
marked as dangling on the lambda. (As-is, we were also doing something
not-great whereby the lambda was responsible for formatting dangling
comments on the parameters, which has been removed.)
Closes https://github.com/astral-sh/ruff/issues/6646.
Closes https://github.com/astral-sh/ruff/issues/6647.
## Test Plan
`cargo test`
## Summary
This PR exposes our `is_expression_parenthesized` logic such that we can
use it to expand expressions when autofixing to include their
parenthesized ranges.
This solution has a few drawbacks: (1) we need to compute parenthesized
ranges in more places, which also relies on backwards lexing; and (2) we
need to make use of this in any relevant fixes.
However, I still think it's worth pursuing. On (1), the implementation
is very contained, so IMO we can easily swap this out for a more
performant solution in the future if needed. On (2), this improves
correctness and fixes some bad syntax errors detected by fuzzing, which
means it has value even if it's not as robust as an _actual_
`ParenthesizedExpression` node in the AST itself.
Closes https://github.com/astral-sh/ruff/issues/4925.
## Test Plan
`cargo test` with new cases that previously failed the fuzzer.
## Summary
I noticed some inconsistencies around uses of `.range.start()`, structs
that have a `TextRange` field but don't implement `Ranged`, etc.
## Test Plan
`cargo test`
## Summary
Instead, we set an `is_star` flag on `Stmt::Try`. This is similar to the
pattern we've migrated towards for `Stmt::For` (removing
`Stmt::AsyncFor`) and friends. While these are significant differences
for an interpreter, we tend to handle these cases identically or nearly
identically.
## Test Plan
`cargo test`
## Summary
In https://github.com/astral-sh/ruff/pull/6512, we added a flag to the
AST to mark implicitly-concatenated string expressions. This PR makes
use of that flag to remove the `is_implicit_concatenation` method.
## Test Plan
`cargo test`
## Summary
Per the discussion in
https://github.com/astral-sh/ruff/discussions/6183, this PR adds an
`implicit_concatenated` flag to the string and bytes constant variants.
It's not actually _used_ anywhere as of this PR, but it is covered by
the tests.
Specifically, we now use a struct for the string and bytes cases, along
with the `Expr::FString` node. That struct holds the value, plus the
flag:
```rust
#[derive(Clone, Debug, PartialEq, is_macro::Is)]
pub enum Constant {
Str(StringConstant),
Bytes(BytesConstant),
...
}
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct StringConstant {
/// The string value as resolved by the parser (i.e., without quotes, or escape sequences, or
/// implicit concatenations).
pub value: String,
/// Whether the string contains multiple string tokens that were implicitly concatenated.
pub implicit_concatenated: bool,
}
impl Deref for StringConstant {
type Target = str;
fn deref(&self) -> &Self::Target {
self.value.as_str()
}
}
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct BytesConstant {
/// The bytes value as resolved by the parser (i.e., without quotes, or escape sequences, or
/// implicit concatenations).
pub value: Vec<u8>,
/// Whether the string contains multiple string tokens that were implicitly concatenated.
pub implicit_concatenated: bool,
}
impl Deref for BytesConstant {
type Target = [u8];
fn deref(&self) -> &Self::Target {
self.value.as_slice()
}
}
```
## Test Plan
`cargo test`
<!--
Thank you for contributing to Ruff! To help us out with reviewing, please consider the following:
- Does this pull request include a summary of the change? (See below.)
- Does this pull request include a descriptive title?
- Does this pull request include references to any relevant issues?
-->
## Summary
This PR adds the `AnyNodeRef.visit_preorder` method. I'll need this method to mark all comments of a suppressed node's children as formatted (in debug builds).
I'm not super happy with this because it now requires a double-dispatch where the `walk_*` methods call into `node.visit_preorder` and the `visit_preorder` then calls back into the visitor. Meaning,
the new implementation now probably results in way more function calls. The other downside is that `AnyNodeRef` now contains code that is difficult to auto-generate. This could be mitigated by extracting the `visit_preorder` method into its own `VisitPreorder` trait.
Anyway, this approach solves the need and avoids duplicating the visiting code once more.
<!-- What's the purpose of the change? What does it do, and why? -->
## Test Plan
`cargo test`
<!-- How was it tested? -->
## Summary
This PR renames the `MagicCommand` token to `IpyEscapeCommand` token and
`MagicKind` to `IpyEscapeKind` type to better reflect the purpose of the
token and type. Similarly, it renames the AST nodes from `LineMagic` to
`IpyEscapeCommand` prefixed with `Stmt`/`Expr` wherever necessary.
It also makes renames from using `jupyter_magic` to
`ipython_escape_commands` in various function names.
The mode value is still `Mode::Jupyter` because the escape commands are
part of the IPython syntax but the lexing/parsing is done for a Jupyter
notebook.
### Motivation behind the rename:
* IPython codebase defines it as "EscapeCommand" / "Escape Sequences":
* Escape Sequences:
292e3a2345/IPython/core/inputtransformer2.py (L329-L333)
* Escape command:
292e3a2345/IPython/core/inputtransformer2.py (L410-L411)
* The word "magic" is used mainly for the actual magic commands i.e.,
the ones starting with `%`/`%%`
(https://ipython.readthedocs.io/en/stable/interactive/reference.html#magic-command-system).
So, this avoids any confusion between the Magic token (`%`, `%%`) and
the escape command itself.
## Test Plan
* `cargo test` to make sure all renames are done correctly.
* `grep` for `jupyter_escape`/`magic` to make sure all renames are done
correctly.
## Summary
This PR leverages the unified function definition node to add precise
AST node types to `MemberKind`, which is used to power our docstring
definition tracking (e.g., classes and functions, whether they're
methods or functions or nested functions and so on, whether they have a
docstring, etc.). It was painful to do this in the past because the
function variants needed to support a union anyway, but storing precise
nodes removes like a dozen panics.
No behavior changes -- purely a refactor.
## Test Plan
`cargo test`
## Summary
Per the suggestion in
https://github.com/astral-sh/ruff/discussions/6183, this PR removes
`AsyncWith`, `AsyncFor`, and `AsyncFunctionDef`, replacing them with an
`is_async` field on the non-async variants of those structs. Unlike an
interpreter, we _generally_ have identical handling for these nodes, so
separating them into distinct variants adds complexity from which we
don't really benefit. This can be seen below, where we get to remove a
_ton_ of code related to adding generic `Any*` wrappers, and a ton of
duplicate branches for these cases.
## Test Plan
`cargo test` is unchanged, apart from parser snapshots.
## Summary
See discussion in
https://github.com/astral-sh/ruff/pull/6351#discussion_r1284996979. We
can remove `RefEquality` entirely and instead use a text offset for
statement keys, since no two statements can start at the same text
offset.
## Test Plan
`cargo test`
## Summary
This PR adds support for help end escape command in the lexer.
### What are "help end escape commands"?
First, the escape commands are special IPython syntax which enhances the
functionality for the IPython REPL. There are 9 types of escape kinds
which are recognized by the tokens which are present at the start of the
command (`?`, `??`, `!`, `!!`, etc.).
Here, the help command is using either the `?` or `??` token at the
start (`?str.replace` for example). Those 2 tokens are also supported
when they're at the end of the command (`str.replace?`), but the other
tokens aren't supported in that position.
There are mainly two types of help end escape commands:
1. Ending with either `?` or `??`, but it also starts with one of the
escape tokens (`%matplotlib?`)
2. On the other hand, there's a stricter version for (1) which doesn't
start with any escape tokens (`str.replace?`)
This PR adds support for (1) while (2) will be supported in the parser.
### Priority
Now, if the command starts and ends with an escape token, how do we
decide the kind of this command? This is where priority comes into
picture. This is simple as there's only one priority where `?`/`??` at
the end takes priority over any other escape token and all of the other
tokens are at the same priority. Remember that only `?`/`??` at the end
is considered valid.
This is mainly useful in the case where someone would want to invoke the
help command on the magic command itself. For example, in `%matplotlib?`
the help command takes priority which means that we want help for the
`matplotlib` magic function instead of calling the magic function
itself.
### Specification
Here's where things get a bit tricky. What if there are question mark
tokens at both ends. How do we decide if it's `Help` (`?`) kind or
`Help2` (`??`) kind?
| | Magic | Value | Kind |
| --- | --- | --- | --- |
| 1 | `?foo?` | `foo` | `Help` |
| 2 | `??foo?` | `foo` | `Help` |
| 3 | `?foo??` | `foo` | `Help2` |
| 4 | `??foo??` | `foo` | `Help2` |
| 5 | `???foo??` | `foo` | `Help2` |
| 6 | `??foo???` | `foo???` | `Help2` |
| 7 | `???foo???` | `?foo???` | `Help2` |
Looking at the above table:
- The question mark tokens on the right takes priority over the ones on
the left but only if the number of question mark on the right is 1 or 2.
- If there are more than 2 question mark tokens on the right side, then
the left side is used to determine the same.
- If the right side is used to determine the kind, then all of the
question marks and whitespaces on the left side are ignored in the
`value`, but if it’s the other way around, then all of the extra
question marks are part of the `value`.
### References
- IPython implementation using the regex:
292e3a2345/IPython/core/inputtransformer2.py (L454-L462)
- Priorities:
292e3a2345/IPython/core/inputtransformer2.py (L466-L469)
## Test Plan
Add a bunch of test cases for the lexer and verify that it matches the
behavior of
IPython transformer.
resolves: #6357
## Summary
Historically, we've stored "qualified names" on our
`BindingKind::Import`, `BindingKind::SubmoduleImport`, and
`BindingKind::ImportFrom` structs. In Ruff, a "qualified name" is a
dot-separated path to a symbol. For example, given `import foo.bar`, the
"qualified name" would be `"foo.bar"`; and given `from foo.bar import
baz`, the "qualified name" would be `foo.bar.baz`.
This PR modifies the `BindingKind` structs to instead store _call paths_
rather than qualified names. So in the examples above, we'd store
`["foo", "bar"]` and `["foo", "bar", "baz"]`. It turns out that this
more efficient given our data access patterns. Namely, we frequently
need to convert the qualified name to a call path (whenever we call
`resolve_call_path`), and it turns out that we do this operation enough
that those conversations show up on benchmarks.
There are a few other advantages to using call paths, rather than
qualified names:
1. The size of `BindingKind` is reduced from 32 to 24 bytes, since we no
longer need to store a `String` (only a boxed slice).
2. All three import types are more consistent, since they now all store
a boxed slice, rather than some storing an `&str` and some storing a
`String` (for `BindingKind::ImportFrom`, we needed to allocate a
`String` to create the qualified name, but the call path is a slice of
static elements that don't require that allocation).
3. A lot of code gets simpler, in part because we now do call path
resolution "earlier". Most notably, for relative imports (`from .foo
import bar`), we store the _resolved_ call path rather than the relative
call path, so the semantic model doesn't have to deal with that
resolution. (See that `resolve_call_path` is simpler, fewer branches,
etc.)
In my testing, this change improves the all-rules benchmark by another
4-5% on top of the improvements mentioned in #6047.
## Summary
Update `F841` autofix to not remove line magic expr
## Test Plan
Added test case for assignment statement with and without type
annotation
fixes: #6116
**Summary** This adds the information whether we're in a .py python
source file or in a .pyi stub file to enable people working on #5822 and
related issues.
I'm not completely happy with `Default` for something that depends on
the input.
**Test Plan** None, this is currently unused, i'm leaving this to first
implementation of stub file specific formatting.
---------
Co-authored-by: Micha Reiser <micha@reiser.io>
Part of #5062
Closes https://github.com/astral-sh/ruff/issues/5931
Implements formatting of a sequence of type parameters in a dedicated
struct for reuse by classes, functions, and type aliases (preparing for
#5929). Adds formatting of type parameters in class and function
definitions — previously, they were just elided.
## Summary
Similar to #6279, moving some helpers onto the struct in the name of
reducing the number of random undiscoverable utilities we have in
`helpers.rs`.
Most of the churn is migrating rules to take `ast::ExprCall` instead of
the spread call arguments.
## Test Plan
`cargo test`
## Summary
This PR removes a now-unnecessary abstraction from `helper.rs`
(`CallArguments`), in favor of adding methods to `Arguments` directly,
which helps with discoverability.
## Summary
This PR boxes the `TypeParams` and `Arguments` fields on the class
definition node. These fields are optional and often emitted, and given
that class definition is our largest enum variant, we pay the cost of
including them for every statement in the AST. Boxing these types
reduces the statement size by 40 bytes, which seems like a good tradeoff
given how infrequently these are accessed.
## Test Plan
Need to benchmark, but no behavior changes.
## Summary
This PR leverages the `Arguments` AST node introduced in #6259 in the
formatter, which ensures that we correctly handle trailing comments in
calls, like:
```python
f(
1,
# comment
)
pass
```
(Previously, this was treated as a leading comment on `pass`.)
This also allows us to unify the argument handling across calls and
class definitions.
## Test Plan
A bunch of new fixture tests, plus improved Black compatibility.
## Summary
Similar to #6259, this PR adds a `TypeParams` node to the AST, to
capture the list of type parameters with their surrounding brackets.
If a statement lacks type parameters, the `type_params` field will be
`None`.
## Summary
This PR adds a new `Arguments` AST node, which we can use for function
calls and class definitions.
The `Arguments` node spans from the left (open) to right (close)
parentheses inclusive.
In the case of classes, the `Arguments` is an option, to differentiate
between:
```python
# None
class C: ...
# Some, with empty vectors
class C(): ...
```
In this PR, we don't really leverage this change (except that a few
rules get much simpler, since we don't need to lex to find the start and
end ranges of the parentheses, e.g.,
`crates/ruff/src/rules/pyupgrade/rules/lru_cache_without_parameters.rs`,
`crates/ruff/src/rules/pyupgrade/rules/unnecessary_class_parentheses.rs`).
In future PRs, this will be especially helpful for the formatter, since
we can track comments enclosed on the node itself.
## Test Plan
`cargo test`
## Summary
This PR renames...
- `Parameter#arg` to `Parameter#name`
- `ParameterWithDefault#def` to `ParameterWithDefault#parameter` (such
that `ParameterWithDefault` has a `default` and a `parameter`)
## Test Plan
`cargo test`
## Summary
This PR renames a few AST nodes for clarity:
- `Arguments` is now `Parameters`
- `Arg` is now `Parameter`
- `ArgWithDefault` is now `ParameterWithDefault`
For now, the attribute names that reference `Parameters` directly are
changed (e.g., on `StmtFunctionDef`), but the attributes on `Parameters`
itself are not (e.g., `vararg`). We may revisit that decision in the
future.
For context, the AST node formerly known as `Arguments` is used in
function definitions. Formally (outside of the Python context),
"arguments" typically refers to "the values passed to a function", while
"parameters" typically refers to "the variables used in a function
definition". E.g., if you Google "arguments vs parameters", you'll get
some explanation like:
> A parameter is a variable in a function definition. It is a
placeholder and hence does not have a concrete value. An argument is a
value passed during function invocation.
We're thus deviating from Python's nomenclature in favor of a scheme
that we find to be more precise.
<!--
Thank you for contributing to Ruff! To help us out with reviewing, please consider the following:
- Does this pull request include a summary of the change? (See below.)
- Does this pull request include a descriptive title?
- Does this pull request include references to any relevant issues?
-->
## Summary
This PR removes the `Interactive` and `FunctionType` parser modes that are unused by ruff
<!-- What's the purpose of the change? What does it do, and why? -->
## Test Plan
`cargo test`
<!-- How was it tested? -->
<!--
Thank you for contributing to Ruff! To help us out with reviewing, please consider the following:
- Does this pull request include a summary of the change? (See below.)
- Does this pull request include a descriptive title?
- Does this pull request include references to any relevant issues?
-->
## Summary
This PR removes the `type_comment` field which our parser doesn't support.
<!-- What's the purpose of the change? What does it do, and why? -->
## Test Plan
`cargo test`
<!-- How was it tested? -->
<!--
Thank you for contributing to Ruff! To help us out with reviewing, please consider the following:
- Does this pull request include a summary of the change? (See below.)
- Does this pull request include a descriptive title?
- Does this pull request include references to any relevant issues?
-->
## Summary
This PR removes the type ignore node from the AST because our parser doesn't support it, and just having it around is confusing.
<!-- What's the purpose of the change? What does it do, and why? -->
## Test Plan
`cargo build`
<!-- How was it tested? -->
## Summary
This PR protects against code like:
```python
from typing import Optional
import bar # ruff: noqa
import baz
class Foo:
x: Optional[str] = None
```
In which the user wrote `# ruff: noqa` to ignore a specific error, not
realizing that it was a file-level exemption that thus turned off all
lint rules.
Specifically, if a `# ruff: noqa` directive is not at the start of a
line, we now ignore it and warn, since this is almost certainly a
mistake.
## Summary
This is a rewrite of the main comment placement logic. `place_comment`
now has three parts:
- place own line comments
- between branches
- after a branch
- place end-of-line comments
- after colon
- after a branch
- place comments for specific nodes (that include module level comments)
The rewrite fixed three bugs: `class A: # trailing comment` comments now
stay end-of-line, `try: # comment` remains end-of-line and deeply
indented try-else-finally comments remain with the right nested
statement.
It will be much easier to give more alternative branches nodes since
this is abstracted away by `is_node_with_body` and the first/last child
helpers. Adding new node types can now be done by adding an entry to the
`place_comment` match. The code went from 1526 lines before #6033 to
1213 lines now.
It thinks it easier to just read the new `placement.rs` rather than
reviewing the diff.
## Test Plan
The existing fixtures staying the same or improving plus new ones for
the bug fixes.
## Summary
This PR adds the implementation for the new Jupyter AST nodes i.e.,
`ExprLineMagic` and `StmtLineMagic`.
## Test Plan
Add test cases for `unparse` containing magic commands
resolves: #6087
<!--
Thank you for contributing to Ruff! To help us out with reviewing,
please consider the following:
- Does this pull request include a summary of the change? (See below.)
- Does this pull request include a descriptive title?
- Does this pull request include references to any relevant issues?
-->
## Summary
<!-- What's the purpose of the change? What does it do, and why? -->
Part of #5062
Requires https://github.com/astral-sh/RustPython-Parser/pull/32
Adds visitation of type alias statements and type parameters in class
and function definitions.
Duplicates tests for `PreorderVisitor` into `Visitor` with new
snapshots. Testing required node implementations for the `TypeParam`
enum, which is a chunk of the diff and the reason we need `Ranged`
implementations in
https://github.com/astral-sh/RustPython-Parser/pull/32.
## Test Plan
<!-- How was it tested? -->
Adds unit tests with snapshots.
## Summary
This PR is a refactoring of placement.rs. The code got more consistent,
some comments were updated and some dead code was removed or replaced
with debug assertions. It also contains a bugfix for the placement of
end-of-branch comments with nested bodies inside try statements that
occurred when refactoring the nested body loop.
## Test Plan
The existing test cases don't change. I added a couple of cases that i
think should be tested but weren't, and a regression test for the bugfix
## Summary
My intuition is that it's faster to do these checks as-needed rather
than allocation new hash maps and vectors for the arguments. (We
typically only query once anyway.)
## Summary
This PR moves two rules (`invalid-all-format` and `invalid-all-object`)
out of the name-binding phase, and into the dedicated pass over all
bindings that occurs at the end of the `Checker`. This is part of my
continued quest to separate the semantic model-building logic from the
actual rule enforcement.
## Summary
This crate now contains utilities for dealing with trivia more broadly:
whitespace, newlines, "simple" trivia lexing, etc. So renaming it to
reflect its increased responsibilities.
To avoid conflicts, I've also renamed `Token` and `TokenKind` to
`SimpleToken` and `SimpleTokenKind`.
## Summary
The `SemanticModel` currently stores the "body" of a given `Suite`,
along with the current statement index. This is used to support "next
sibling" queries, but we only use this in exactly one place -- the rule
that simplifies constructs like this to `any` or `all`:
```python
for x in y:
if x == 0:
return True
return False
```
Instead of tracking the state, we can just do a (slightly more
expensive) traversal, by finding the node within its parent and
returning the next node in the body.
Note that we'll only have to do this extremely rarely -- namely, for
functions that contain something like:
```python
for x in y:
if x == 0:
return True
```
## Summary
This PR just naively unrolls `collect_call_path` to handle attribute
resolutions of up to eight segments. In profiling via Instruments, it
seems to be about 4x faster for a very hot code path (4% of total
execution time on `main`, 1% here).
Profiling by running `RAYON_NUM_THREADS=1 cargo instruments -t time
--profile release-debug --time-limit 10000 -p ruff_cli -o
FromSlice.trace -- check crates/ruff/resources/test/cpython --silent -e
--no-cache --select ALL`, and modifying the linter to loop infinitely up
to the specified time (10 seconds) to increase sample size.
Before:
<img width="1792" alt="Screen Shot 2023-07-15 at 5 13 34 PM"
src="https://github.com/astral-sh/ruff/assets/1309177/4a8b0b45-8b67-43e9-af5e-65b326928a8e">
After:
<img width="1792" alt="Screen Shot 2023-07-15 at 8 38 51 PM"
src="https://github.com/astral-sh/ruff/assets/1309177/d8829159-2c79-4a49-ab3c-9e4e86f5b2b1">
## Summary
Previously, `StmtIf` was defined recursively as
```rust
pub struct StmtIf {
pub range: TextRange,
pub test: Box<Expr>,
pub body: Vec<Stmt>,
pub orelse: Vec<Stmt>,
}
```
Every `elif` was represented as an `orelse` with a single `StmtIf`. This
means that this representation couldn't differentiate between
```python
if cond1:
x = 1
else:
if cond2:
x = 2
```
and
```python
if cond1:
x = 1
elif cond2:
x = 2
```
It also makes many checks harder than they need to be because we have to
recurse just to iterate over an entire if-elif-else and because we're
lacking nodes and ranges on the `elif` and `else` branches.
We change the representation to a flat
```rust
pub struct StmtIf {
pub range: TextRange,
pub test: Box<Expr>,
pub body: Vec<Stmt>,
pub elif_else_clauses: Vec<ElifElseClause>,
}
pub struct ElifElseClause {
pub range: TextRange,
pub test: Option<Expr>,
pub body: Vec<Stmt>,
}
```
where `test: Some(_)` represents an `elif` and `test: None` an else.
This representation is different tradeoff, e.g. we need to allocate the
`Vec<ElifElseClause>`, the `elif`s are now different than the `if`s
(which matters in rules where want to check both `if`s and `elif`s) and
the type system doesn't guarantee that the `test: None` else is actually
last. We're also now a bit more inconsistent since all other `else`,
those from `for`, `while` and `try`, still don't have nodes. With the
new representation some things became easier, e.g. finding the `elif`
token (we can use the start of the `ElifElseClause`) and formatting
comments for if-elif-else (no more dangling comments splitting, we only
have to insert the dangling comment after the colon manually and set
`leading_alternate_branch_comments`, everything else is taken of by
having nodes for each branch and the usual placement.rs fixups).
## Merge Plan
This PR requires coordination between the parser repo and the main ruff
repo. I've split the ruff part, into two stacked PRs which have to be
merged together (only the second one fixes all tests), the first for the
formatter to be reviewed by @michareiser and the second for the linter
to be reviewed by @charliermarsh.
* MH: Review and merge
https://github.com/astral-sh/RustPython-Parser/pull/20
* MH: Review and merge or move later in stack
https://github.com/astral-sh/RustPython-Parser/pull/21
* MH: Review and approve
https://github.com/astral-sh/RustPython-Parser/pull/22
* MH: Review and approve formatter PR
https://github.com/astral-sh/ruff/pull/5459
* CM: Review and approve linter PR
https://github.com/astral-sh/ruff/pull/5460
* Merge linter PR in formatter PR, fix ecosystem checks (ecosystem
checks can't run on the formatter PR and won't run on the linter PR, so
we need to merge them first)
* Merge https://github.com/astral-sh/RustPython-Parser/pull/22
* Create tag in the parser, update linter+formatter PR
* Merge linter+formatter PR https://github.com/astral-sh/ruff/pull/5459
---------
Co-authored-by: Micha Reiser <micha@reiser.io>
## Summary
The motivating change here is to remove `let range =
except_handler.try_identifier().unwrap();` and instead just do
`name.range()`, since exception names now have ranges attached to them
by the parse. This also required some refactors (which are improvements)
to the built-in attribute shadowing rules, since at least one invocation
relied on passing in the exception handler and calling
`.try_identifier()`. Now that we have easy access to identifiers, we can
remove the whole `AnyShadowing` abstraction.
## Summary
I'm doing some unrelated profiling, and I noticed that this method is
actually measurable on the CPython benchmark -- it's > 1% of execution
time. We don't need to lex here, we already know the ranges of all
comments, so we can just do a simple binary search for overlap, which
brings the method down to 0%.
## Test Plan
`cargo test`
## Summary
When required-imports is set with the syntax from ... import ... as ...,
autofix I002 is failing
## Test Plan
Reuse the same python files as
`crates/ruff/src/rules/isort/mod.rs:required_import` test.
## Summary
This is really bad PR hygiene, but a mix of: using `Locator`-based fixes
in a few places (in lieu of `Generator`-based fixes), using match syntax
to avoid `.len() == 1` checks, using common helpers in more places, etc.
## Test Plan
`cargo test`
## Summary
We have two `Cursor` implementations. This PR moves the implementation
from the formatter into `ruff_python_whitespace` (kind of a poorly-named
crate now) and uses it for both use-cases.
## Summary
This is the result of running `cargo +nightly clippy --workspace
--all-targets --all-features -- -D warnings` and fixing all violations.
Just wanted to see if there were any interesting new checks on nightly
👀
## Summary
Format `ExprIfExp`, also known as the ternary operator or inline `if`.
It can look like
```python
a1 = 1 if True else 2
```
but also
```python
b1 = (
# We return "a" ...
"a" # that's our True value
# ... if this condition matches ...
if True # that's our test
# ... otherwise we return "b§
else "b" # that's our False value
)
```
This also fixes a visitor order bug.
The jaccard index on django goes from 0.911 to 0.915.
## Test Plan
I added fixtures without and with comments in strange places.
## Summary
The following code was previously leading to unstable formatting:
```python
try:
try:
pass
finally:
print(1) # issue7208
except A:
pass
```
The comment would be formatted as a trailing comment of `try` which is
unstable as an end-of-line comment gets two extra whitespaces.
This was originally found in
99b00efd5e/Lib/getpass.py (L68-L91)
## Test Plan
I added a regression test
Support for `let…else` formatting was just merged to nightly
(rust-lang/rust#113225). Rerun `cargo fmt` with Rust nightly 2023-07-02
to pick this up. Followup to #939.
Signed-off-by: Anders Kaseorg <andersk@mit.edu>
## Summary
When visiting AugAssign in evaluation order, the AugAssign `target`
should be visited after it's `value`. Based on my testing, the pseudo
code for `a += b` is effectively:
```python
tmp = a
a = tmp.__iadd__(b)
```
That is, an ideal traversal order would look something like this:
1. load a
2. b
3. op
4. store a
But, there is only a single AST node which captures `a` in the statement
`a += b`, so it cannot be traversed both before and after the traversal
of `b` and the `op`.
Nonetheless, I think traversing `a` after `b` and the `op` makes the
most sense for a number of reasons:
1. All the other assignment expressions traverse their `value`s before
their `target`s. Having `AugAssign` traverse in the same order would be
more consistent.
2. Within the AST, the `ctx` of the `target` for an `AugAssign` is
`Store` (though technically this is a `Load` and `Store` operation, the
AST only indicates it as a `Store`). Since the the store portion of the
`AugAssign` occurs last, I think it makes sense to traverse the `target`
last as well.
The effect of this is marginal, but it may have an impact on the
behavior of #5271.
<!--
Thank you for contributing to Ruff! To help us out with reviewing, please consider the following:
- Does this pull request include a summary of the change? (See below.)
- Does this pull request include a descriptive title?
- Does this pull request include references to any relevant issues?
-->
## Summary
This PR implements formatting for non-f-string Strings that do not use implicit concatenation.
Docstring formatting is out of the scope of this PR.
<!-- What's the purpose of the change? What does it do, and why? -->
## Test Plan
I added a few tests for simple string literals.
## Performance
Ouch. This is hitting performance somewhat hard. This is probably because we now iterate each string a couple of times:
1. To detect if it is an implicit string continuation
2. To detect if the string contains any new lines
3. To detect the preferred quote
4. To normalize the string
Edit: I integrated the detection of newlines into the preferred quote detection so that we only iterate the string three time.
We can probably do better by merging the implicit string continuation with the quote detection and new line detection by iterating till the end of the string part and returning the offset. We then use our simple tokenizer to skip over any comments or whitespace until we find the first non trivia token. From there we keep continue doing this in a loop until we reach the end o the string. I'll leave this improvement for later.
## Summary
The `Visitor` and `preorder::Visitor` traits provide some convenience
functions, `visit_annotation` and `visit_format_spec`, for handling
annotation and format spec expressions respectively. Both of these
functions accept an `&Expr` and have a default implementation which
delegates to `walk_expr`. The problem with this approach is that any
custom handling done in `visit_expr` will be skipped for annotations and
format specs. Instead, to capture any custom logic implemented in
`visit_expr`, both of these function's default implementations should
delegate to `visit_expr` instead of `walk_expr`.
## Example
Consider the below `Visitor` implementation:
```rust
impl<'a> Visitor<'a> for Example<'a> {
fn visit_expr(&mut self, expr: &'a Expr) {
match expr {
Expr::Name(ExprName { id, .. }) => println!("Visiting {:?}", id),
_ => walk_expr(self, expr),
}
}
}
```
Run on the following Python snippet:
```python
a: b
```
I would expect such a visitor to print the following:
```
Visiting b
Visiting a
```
But it instead prints the following:
```
Visiting a
```
Our custom `visit_expr` handler is not invoked for the annotation.
## Test Plan
Tests added in #5271 caught this behavior.
## Summary
This is a follow up to #5221. Turns out it was easy to restructure the
visitor to get the right order, I'm just dumb 🤷♂️ I've
removed `visit_arg_with_default` entirely from the `Visitor`, although
it still exists as part of `preorder::Visitor`.
## Summary
According to the AST visitor documentation, the AST visitor "visits all
nodes in the AST recursively in evaluation-order". However, the current
traversal fails to meet this specification in a few places.
### Function traversal
```python
order = []
@(order.append("decorator") or (lambda x: x))
def f(
posonly: order.append("posonly annotation") = order.append("posonly default"),
/,
arg: order.append("arg annotation") = order.append("arg default"),
*args: order.append("vararg annotation"),
kwarg: order.append("kwarg annotation") = order.append("kwarg default"),
**kwargs: order.append("kwarg annotation")
) -> order.append("return annotation"):
pass
print(order)
```
Executing the above snippet using CPython 3.10.6 prints the following
result (formatted for readability):
```python
[
'decorator',
'posonly default',
'arg default',
'kwarg default',
'arg annotation',
'posonly annotation',
'vararg annotation',
'kwarg annotation',
'kwarg annotation',
'return annotation',
]
```
Here we can see that decorators are evaluated first, followed by
argument defaults, and annotations are last. The current traversal of a
function's AST does not align with this order.
### Annotated assignment traversal
```python
order = []
x: order.append("annotation") = order.append("expression")
print(order)
```
Executing the above snippet using CPython 3.10.6 prints the following
result:
```python
['expression', 'annotation']
```
Here we can see that an annotated assignments annotation gets evaluated
after the assignment's expression. The current traversal of an annotated
assignment's AST does not align with this order.
## Why?
I'm slowly working on #3946 and porting over some of the logic and tests
from ssort. ssort is very sensitive to AST traversal order, so ensuring
the utmost correctness here is important.
## Test Plan
There doesn't seem to be existing tests for the AST visitor, so I didn't
bother adding tests for these very subtle changes. However, this
behavior will be captured in the tests for the PR which addresses #3946.
## Summary
Now that all identifiers include ranges (#5194), we can remove a ton of
this "custom lexing" code that we have to sketchily extract identifier
ranges from source.
## Test Plan
`cargo test`
## Summary
In https://github.com/astral-sh/RustPython-Parser/pull/8, we modified
RustPython to include ranges for any identifiers that aren't
`Expr::Name` (which already has an identifier).
For example, the `e` in `except ValueError as e` was previously
un-ranged. To extract its range, we had to do some lexing of our own.
This change should improve performance and let us remove a bunch of
code.
## Test Plan
`cargo test`
## Summary
This PR modifies our statement deletion logic to delete any preceding
continuation lines.
For example, given:
```py
x = 1; \
import os
```
We'll now rewrite to:
```py
x = 1;
```
In addition, the logic can now handle multiple preceding continuations
(which is unlikely, but valid).
## Summary
This PR upgrade RustPython to pull in the changes to `Arguments` (zip
defaults with their identifiers) and all the renames to `CmpOp` and
friends.
## Summary
This changes the caching design from one cache file per source file, to
one cache file per package. This greatly reduces the amount of cache
files that are opened and written, while maintaining roughly the same
(combined) size as bincode is very compact.
Below are some very much not scientific performance tests. It uses
projects/sources to check:
* small.py: single, 31 bytes Python file with 2 errors.
* test.py: single, 43k Python file with 8 errors.
* fastapi: FastAPI repo, 1134 files checked, 0 errors.
Source | Before # files | After # files | Before size | After size
-------|-------|-------|-------|-------
small.py | 1 | 1 | 20 K | 20 K
test.py | 1 | 1 | 60 K | 60 K
fastapi | 1134 | 518 | 4.5 M | 2.3 M
One question that might come up is why fastapi still has 518 cache files
and not 1? That is because this is using the existing package
resolution, which sees examples, docs, etc. as separate from the "main"
source code (in the fastapi directory in the repo). In this future it
might be worth consider switching to a one cache file per repo strategy.
This new design is not perfect and does have a number of known issues.
First, like the old design it doesn't remove the cache for a source file
that has been (re)moved until `ruff clean` is called.
Second, this currently uses a large mutex around the mutation of the
package cache (e.g. inserting result). This could be (or become) a
bottleneck. It's future work to test and improve this (if needed).
Third, currently the packages and opened and stored in a sequential
loop, this could be done parallel. This is also future work.
## Test Plan
Run `ruff check` (with caching enabled) twice on any Python source code
and it should produce the same results.
## Summary
Given:
```python
\
import os
```
Deleting `import os` leaves a syntax error: a file can't end in a
continuation. We have code to handle this case, but it failed to pick up
continuations at the _very start_ of a file.
Closes#5156.
## Summary
At present, when we store a binding, we include a `TextRange` alongside
it. The `TextRange` _sometimes_ matches the exact range of the
identifier to which the `Binding` is linked, but... not always.
For example, given:
```python
x = 1
```
The binding we create _will_ use the range of `x`, because the left-hand
side is an `Expr::Name`, which has a valid range on it.
However, given:
```python
try:
pass
except ValueError as e:
pass
```
When we create a binding for `e`, we don't have a `TextRange`... The AST
doesn't give us one. So we end up extracting it via lexing.
This PR extends that pattern to the rest of the binding kinds, to ensure
that whenever we create a binding, we always use the range of the bound
name. This leads to better diagnostics in cases like pattern matching,
whereby the diagnostic for "unused variable `x`" here used to include
`*x`, instead of just `x`:
```python
def f(provided: int) -> int:
match provided:
case [_, *x]:
pass
```
This is _also_ required for symbol renames, since we track writes as
bindings -- so we need to know the ranges of the bound symbols.
By storing these bindings precisely, we can also remove the
`binding.trimmed_range` abstraction -- since bindings already use the
"trimmed range".
To implement this behavior, I took some of our existing utilities (like
the code we had for `except ValueError as e` above), migrated them from
a full lexer to a zero-allocation lexer that _only_ identifies
"identifiers", and moved the behavior into a trait, so we can now do
`stmt.identifier(locator)` to get the range for the identifier.
Honestly, we might end up discarding much of this if we decide to put
ranges on all identifiers
(https://github.com/astral-sh/RustPython-Parser/pull/8). But even if we
do, this will _still_ be a good change, because the lexer introduced
here is useful beyond names (e.g., we use it find the `except` keyword
in an exception handler, to find the `else` after a `for` loop, and so
on). So, I'm fine committing this even if we end up changing our minds
about the right approach.
Closes#5090.
## Benchmarks
No significant change, with one statistically significant improvement
(-2.1654% on `linter/all-rules/large/dataset.py`):
```
linter/default-rules/numpy/globals.py
time: [73.922 µs 73.955 µs 73.986 µs]
thrpt: [39.882 MiB/s 39.898 MiB/s 39.916 MiB/s]
change:
time: [-0.5579% -0.4732% -0.3980%] (p = 0.00 < 0.05)
thrpt: [+0.3996% +0.4755% +0.5611%]
Change within noise threshold.
Found 6 outliers among 100 measurements (6.00%)
4 (4.00%) low severe
1 (1.00%) low mild
1 (1.00%) high mild
linter/default-rules/pydantic/types.py
time: [1.4909 ms 1.4917 ms 1.4926 ms]
thrpt: [17.087 MiB/s 17.096 MiB/s 17.106 MiB/s]
change:
time: [+0.2140% +0.2741% +0.3392%] (p = 0.00 < 0.05)
thrpt: [-0.3380% -0.2734% -0.2136%]
Change within noise threshold.
Found 4 outliers among 100 measurements (4.00%)
3 (3.00%) high mild
1 (1.00%) high severe
linter/default-rules/numpy/ctypeslib.py
time: [688.97 µs 691.34 µs 694.15 µs]
thrpt: [23.988 MiB/s 24.085 MiB/s 24.168 MiB/s]
change:
time: [-1.3282% -0.7298% -0.1466%] (p = 0.02 < 0.05)
thrpt: [+0.1468% +0.7351% +1.3461%]
Change within noise threshold.
Found 15 outliers among 100 measurements (15.00%)
1 (1.00%) low mild
2 (2.00%) high mild
12 (12.00%) high severe
linter/default-rules/large/dataset.py
time: [3.3872 ms 3.4032 ms 3.4191 ms]
thrpt: [11.899 MiB/s 11.954 MiB/s 12.011 MiB/s]
change:
time: [-0.6427% -0.2635% +0.0906%] (p = 0.17 > 0.05)
thrpt: [-0.0905% +0.2642% +0.6469%]
No change in performance detected.
Found 20 outliers among 100 measurements (20.00%)
1 (1.00%) low severe
2 (2.00%) low mild
4 (4.00%) high mild
13 (13.00%) high severe
linter/all-rules/numpy/globals.py
time: [148.99 µs 149.21 µs 149.42 µs]
thrpt: [19.748 MiB/s 19.776 MiB/s 19.805 MiB/s]
change:
time: [-0.7340% -0.5068% -0.2778%] (p = 0.00 < 0.05)
thrpt: [+0.2785% +0.5094% +0.7395%]
Change within noise threshold.
Found 2 outliers among 100 measurements (2.00%)
1 (1.00%) low mild
1 (1.00%) high severe
linter/all-rules/pydantic/types.py
time: [3.0362 ms 3.0396 ms 3.0441 ms]
thrpt: [8.3779 MiB/s 8.3903 MiB/s 8.3997 MiB/s]
change:
time: [-0.0957% +0.0618% +0.2125%] (p = 0.45 > 0.05)
thrpt: [-0.2121% -0.0618% +0.0958%]
No change in performance detected.
Found 11 outliers among 100 measurements (11.00%)
1 (1.00%) low severe
3 (3.00%) low mild
5 (5.00%) high mild
2 (2.00%) high severe
linter/all-rules/numpy/ctypeslib.py
time: [1.6879 ms 1.6894 ms 1.6909 ms]
thrpt: [9.8478 MiB/s 9.8562 MiB/s 9.8652 MiB/s]
change:
time: [-0.2279% -0.0888% +0.0436%] (p = 0.18 > 0.05)
thrpt: [-0.0435% +0.0889% +0.2284%]
No change in performance detected.
Found 5 outliers among 100 measurements (5.00%)
4 (4.00%) low mild
1 (1.00%) high severe
linter/all-rules/large/dataset.py
time: [7.1520 ms 7.1586 ms 7.1654 ms]
thrpt: [5.6777 MiB/s 5.6831 MiB/s 5.6883 MiB/s]
change:
time: [-2.5626% -2.1654% -1.7780%] (p = 0.00 < 0.05)
thrpt: [+1.8102% +2.2133% +2.6300%]
Performance has improved.
Found 2 outliers among 100 measurements (2.00%)
1 (1.00%) low mild
1 (1.00%) high mild
```
## Summary
This fixes a number of problems in the formatter that showed up with
various files in the [cpython](https://github.com/python/cpython)
repository. These problems surfaced as unstable formatting and invalid
code. This is not the entirety of problems discovered through cpython,
but a big enough chunk to separate it. Individual fixes are generally
individual commits. They were discovered with #5055, which i update as i
work through the output
## Test Plan
I added regression tests with links to cpython for each entry, except
for the two stubs that also got comment stubs since they'll be
implemented properly later.
## Summary
This PR runs `rustfmt` with a few nightly options as a one-time fix to
catch some malformatted comments. I ended up just running with:
```toml
condense_wildcard_suffixes = true
edition = "2021"
max_width = 100
normalize_comments = true
normalize_doc_attributes = true
reorder_impl_items = true
unstable_features = true
use_field_init_shorthand = true
```
Since these all seem like reasonable things to fix, so may as well while
I'm here.
## Summary
Our current mechanism for handling deletions (e.g., `del x`) is to
remove the symbol from the scope's `bindings` table. This "does the
right thing", in that if we then reference a deleted symbol, we're able
to determine that it's unbound -- but it causes a variety of problems,
mostly in that it makes certain bindings and references unreachable
after-the-fact.
Consider:
```python
x = 1
print(x)
del x
```
If we analyze this code _after_ running the semantic model over the AST,
we'll have no way of knowing that `x` was ever introduced in the scope,
much less that it was bound to a value, read, and then deleted --
because we effectively erased `x` from the model entirely when we hit
the deletion.
In practice, this will make it impossible for us to support local symbol
renames. It also means that certain rules that we want to move out of
the model-building phase and into the "check dead scopes" phase wouldn't
work today, since we'll have lost important information about the source
code.
This PR introduces two new `BindingKind` variants to model deletions:
- `BindingKind::Deletion`, which represents `x = 1; del x`.
- `BindingKind::UnboundException`, which represents:
```python
try:
1 / 0
except Exception as e:
pass
```
In the latter case, `e` gets unbound after the exception handler
(assuming it's triggered), so we want to handle it similarly to a
deletion.
The main challenge here is auditing all of our existing `Binding` and
`Scope` usages to understand whether they need to accommodate deletions
or otherwise behave differently. If you look one commit back on this
branch, you'll see that the code is littered with `NOTE(charlie)`
comments that describe the reasoning behind changing (or not) each of
those call sites. I've also augmented our test suite in preparation for
this change over a few prior PRs.
### Alternatives
As an alternative, I considered introducing a flag to `BindingFlags`,
like `BindingFlags::UNBOUND`, and setting that at the appropriate time.
This turned out to be a much more difficult change, because we tend to
match on `BindingKind` all over the place (e.g., we have a bunch of code
blocks that only run when a `BindingKind` is
`BindingKind::Importation`). As a result, introducing these new
`BindingKind` variants requires only a few changes at the client sites.
Adding a flag would've required a much wider-reaching change.
## Summary
This PR (1) avoids flagging `TypedDict` and `NamedTuple` conversions
when attributes are dunder methods, like `__dict__`, and (2) avoids
flagging the `A003` shadowed-attribute rule for `TypedDict` classes at
all, where it doesn't really apply (since those attributes are only
accessed via subscripting anyway).
Closes#5027.
Improves the `ruff_parse_simple` fuzz harness by adding checks for
parsed locations to ensure they all lie on UTF-8 character boundaries.
This will allow for faster identification of issues like #5004.
This also adds additional details for Apple M1 users and clarifies the
importance of using `init-fuzzer.sh` (thanks for the feedback,
@jasikpark 🙂).
## Summary
The `RET504` rule, which looks for unnecessary assignments before return
statements, is a frequent source of issues (#4173, #4236, #4242, #1606,
#2950). Over time, we've tried to refine the logic to handle more cases.
For example, we now avoid analyzing any functions that contain any
function calls or attribute assignments, since those operations can
contain side effects (and so we mark them as a "read" on all variables
in the function -- we could do a better job with code graph analysis to
handle this limitation, but that'd be a more involved change.) We also
avoid flagging any variables that are the target of multiple
assignments. Ultimately, though, I'm not happy with the implementation
-- we just can't do sufficiently reliable analysis of arbitrary code
flow given the limited logic herein, and the existing logic is very hard
to reason about and maintain.
This PR refocuses the rule to only catch cases of the form:
```py
def f():
x = 1
return x
```
That is, we now only flag returns that are immediately preceded by an
assignment to the returned variable. While this is more limiting, in
some ways, it lets us flag more cases vis-a-vis the previous
implementation, since we no longer "fully eject" when functions contain
function calls and other effect-ful operations.
Closes#4173.
Closes#4236.
Closes#4242.
## Summary
We use `.trim()` and friends in a bunch of places, to strip whitespace
from source code. However, not all Unicode whitespace characters are
considered "whitespace" in Python, which only supports the standard
space, tab, and form-feed characters.
This PR audits our usages of `.trim()`, `.trim_start()`, `.trim_end()`,
and `char::is_whitespace`, and replaces them as appropriate with a new
`.trim_whitespace()` analogues, powered by a `PythonWhitespace` trait.
In general, the only place that should continue to use `.trim()` is
content within docstrings, which don't need to adhere to Python's
semantic definitions of whitespace.
Closes#4991.
## Summary
`ruff_newlines` becomes `ruff_python_whitespace`, and includes the
existing "universal newline" handlers alongside the Python
whitespace-specific utilities.