Summary
---------
PEP 695 Generics introduce a scope inside a class statement's arguments
and keywords.
```
class C[T](A[T]): # the T in A[T] is not from the global scope but from a type-param-specfic scope
...
```
When doing inference on the class bases, we currently have been doing
base class expression lookups in the global scope. Not an issue without
generics (since a scope is only created when generics are present).
This change instead makes sure to stop the global scope inference from
going into expressions within this sub-scope. Since there is a separate
scope, `check_file` and friends will trigger inference on these
expressions still.
Another change as a part of this is making sure that `ClassType` looks
up its bases in the right scope.
Test Plan
----------
`cargo test --package red_knot_python_semantic generics` will run the
markdown test that previously would panic due to scope lookup issues
---------
Co-authored-by: Micha Reiser <micha@reiser.io>
Co-authored-by: Carl Meyer <carl@astral.sh>
This reverts https://github.com/astral-sh/ruff/pull/13799, and restores
the previous behavior, which I think was the most pragmatic and useful
version of the divide-by-zero error, if we will emit it at all.
In general, a type checker _does_ emit diagnostics when it can detect
something that will definitely be a problem for some inhabitants of a
type, but not others. For example, `x.foo` if `x` is typed as `object`
is a type error, even though some inhabitants of the type `object` will
have a `foo` attribute! The correct fix is to make your type annotations
more precise, so that `x` is assigned a type which definitely has the
`foo` attribute.
If we will emit it divide-by-zero errors, it should follow the same
logic. Dividing an inhabitant of the type `int` by zero may not emit an
error, if the inhabitant is an instance of a subclass of `builtins.int`
that overrides division. But it may emit an error (more likely it will).
If you don't want the diagnostic, you can clarify your type annotations
to require an instance of your safe subclass.
Because the Python type system doesn't have the ability to explicitly
reflect the fact that divide-by-zero is an error in type annotations
(e.g. for `int.__truediv__`), or conversely to declare a type as safe
from divide-by-zero, or include a "nonzero integer" type which it is
always safe to divide by, the analogy doesn't fully apply. You can't
explicitly mark your subclass of `int` as safe from divide-by-zero, we
just semi-arbitrarily choose to silence the diagnostic for subclasses,
to avoid false positives.
Also, if we fully followed the above logic, we'd have to error on every
`int / int` because the RHS `int` might be zero! But this would likely
cause too many false positives, because of the lack of a "nonzero
integer" type.
So this is just a pragmatic choice to emit the diagnostic when it is
very likely to be an error. It's unclear how useful this diagnostic is
in practice, but this version of it is at least very unlikely to cause
harm.
If the LHS is just `int` or `float` type, that type includes custom
subclasses which can arbitrarily override division behavior, so we
shouldn't emit a divide-by-zero error in those cases.
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
## Summary
Add type inference for comparisons involving union types. For example:
```py
one_or_two = 1 if flag else 2
reveal_type(one_or_two <= 2) # revealed: Literal[True]
reveal_type(one_or_two <= 1) # revealed: bool
reveal_type(one_or_two <= 0) # revealed: Literal[False]
```
closes#13779
## Test Plan
See `resources/mdtest/comparison/unions.md`
## Summary
Fixes the bug described in #13514 where an unbound public type defaulted
to the type or `Unknown`, whereas it should only be the type if unbound.
## Test Plan
Added a new test case
---------
Co-authored-by: Carl Meyer <carl@astral.sh>
## Summary
This PR adds a debug assertion that asserts that `TypeInference::extend`
is only called on results that have the same scope.
This is critical because `expressions` uses `ScopedExpressionId` that
are local and merging expressions from different
scopes would lead to incorrect expression types.
We could consider storing `scope` only on `TypeInference` for debug
builds. Doing so has the advantage that the `TypeInference` type is
smaller of which we'll have many. However, a `ScopeId` is a `u32`... so
it shouldn't matter that much and it avoids storing the `scope` both on
`TypeInference` and `TypeInferenceBuilder`
## Test Plan
`cargo test`
## Summary
This PR implements comparisons for (tuple, tuple).
It will close#13688 and complete an item in #13618 once merged.
## Test Plan
Basic tests are included for (tuple, tuple) comparisons.
---------
Co-authored-by: Carl Meyer <carl@astral.sh>
## Summary
Just a small simplification to remove some unnecessary complexity here.
Rather than using separate branches for subscript expressions involving
boolean literals, we can simply convert them to integer literals and
reuse the logic in the `IntLiteral` branches.
## Test Plan
`cargo test -p red_knot_python_semantic`
## Summary
This PR adds support for unpacking tuple expression in an assignment
statement where the target expression can be a tuple or a list (the
allowed sequence targets).
The implementation introduces a new `infer_assignment_target` which can
then be used for other targets like the ones in for loops as well. This
delegates it to the `infer_definition`. The final implementation uses a
recursive function that visits the target expression in source order and
compares the variable node that corresponds to the definition. At the
same time, it keeps track of where it is on the assignment value type.
The logic also accounts for the number of elements on both sides such
that it matches even if there's a gap in between. For example, if
there's a starred expression like `(a, *b, c) = (1, 2, 3)`, then the
type of `a` will be `Literal[1]` and the type of `b` will be
`Literal[2]`.
There are a couple of follow-ups that can be done:
* Use this logic for other target positions like `for` loop
* Add diagnostics for mis-match length between LHS and RHS
## Test Plan
Add various test cases using the new markdown test framework.
Validate that existing test cases pass.
---------
Co-authored-by: Carl Meyer <carl@astral.sh>
## Summary
Porting infer tests to new markdown tests framework.
Link to the corresponding issue: #13696
---------
Co-authored-by: Carl Meyer <carl@astral.sh>
## Summary
- Fix a bug with `… is not …` type guards.
Previously, in an example like
```py
x = [1]
y = [1]
if x is not y:
reveal_type(x)
```
we would infer a type of `list[int] & ~list[int] == Never` for `x`
inside the conditional (instead of `list[int]`), since we built a
(negative) intersection with the type of the right hand side (`y`).
However, as this example shows, this assumption can only be made for
singleton types (types with a single inhabitant) such as `None`.
- Add support for `… is …` type guards.
closes#13715
## Test Plan
Moved existing `narrow_…` tests to Markdown-based tests and added new
ones (including a regression test for the bug described above). Note
that will create some conflicts with
https://github.com/astral-sh/ruff/pull/13719. I tried to establish the
correct organizational structure as proposed in
https://github.com/astral-sh/ruff/pull/13719#discussion_r1800188105
Address a potential point of confusion that bit a contributor in
https://github.com/astral-sh/ruff/pull/13719
Also remove a no-longer-accurate line about bare `error: ` assertions
(which are no longer allowed) and clarify another point about which
kinds of error assertions to use.
## Summary
Fixes#13708.
Silence `undefined-reveal` diagnostic on any line including a `#
revealed:` assertion.
Add more context to un-silenced `undefined-reveal` diagnostics in mdtest
test failures. This doesn't make the failure output less verbose, but it
hopefully clarifies the right fix for an `undefined-reveal` in mdtest,
while still making it clear what red-knot's normal diagnostic for this
looks like.
## Test Plan
Added and updated tests.
This adds documentation for the new test framework.
I also added documentation for the planned design of features we haven't
built yet (clearly marked as such), so that this doc can become the sole
source of truth for the test framework design (we don't need to refer
back to the original internal design document.)
Also fixes a few issues in the test framework implementation that were
discovered in writing up the docs.
---------
Co-authored-by: T-256 <132141463+T-256@users.noreply.github.com>
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
Co-authored-by: Dhruv Manilawala <dhruvmanila@gmail.com>