Commit Graph

1061 Commits

Author SHA1 Message Date
Alex Waygood cd079bd92e
[ty] Improve `@override`, `@final` and Liskov checks in cases where there are multiple reachable definitions (#21767) 2025-12-03 12:51:36 +00:00
Alex Waygood 5756b3809c
[ty] Extend `invalid-explicit-override` to also cover properties decorated with `@override` that do not override anything (#21756) 2025-12-03 11:27:47 +00:00
Micha Reiser 92c5f62ec0
[ty] Enable LRU collection for parsed module (#21749) 2025-12-03 12:16:18 +01:00
David Peter 21e5a57296
[ty] Support typevar-specialized dynamic types in generic type aliases (#21730)
## Summary

For a type alias like the one below, where `UnknownClass` is something
with a dynamic type, we previously lost track of the fact that this
dynamic type was explicitly specialized *with a type variable*. If that
alias is then later explicitly specialized itself (`MyAlias[int]`), we
would miscount the number of legacy type variables and emit a
`invalid-type-arguments` diagnostic
([playground](https://play.ty.dev/886ae6cc-86c3-4304-a365-510d29211f85)).
```py
T = TypeVar("T")

MyAlias: TypeAlias = UnknownClass[T] | None
```
The solution implemented here is not pretty, but we can hopefully get
rid of it via https://github.com/astral-sh/ty/issues/1711. Also, once we
properly support `ParamSpec` and `Concatenate`, we should be able to
remove some of this code.

This addresses many of the `invalid-type-arguments` false-positives in
https://github.com/astral-sh/ty/issues/1685. With this change, there are
still some diagnostics of this type left. Instead of implementing even
more (rather sophisticated) workarounds for these cases as well, it
might be much easier to wait for full `ParamSpec`/`Concatenate` support
and then try again.

A disadvantage of this implementation is that we lose track of some
`@Todo` types and replace them with `Unknown`. We could spend more
effort and try to preserve them, but I'm unsure if this is the best use
of our time right now.

## Test Plan

New Markdown tests.
2025-12-03 10:00:02 +01:00
Denys Zhak f4e4229683
Add token based `parenthesized_ranges` implementation (#21738)
Co-authored-by: Micha Reiser <micha@reiser.io>
2025-12-03 08:15:17 +00:00
David Peter e6ddeed386
[ty] Default-specialization of generic type aliases (#21765)
## Summary

Implement default-specialization of generic type aliases (implicit or
PEP-613) if they are used in a type expression without an explicit
specialization.

closes https://github.com/astral-sh/ty/issues/1690

## Typing conformance

```diff
-generics_defaults_specialization.py:26:5: error[type-assertion-failure] Type `SomethingWithNoDefaults[int, str]` does not match asserted type `SomethingWithNoDefaults[int, DefaultStrT]`
```

That's exactly what we want ✔️ 

All other tests in this file pass as well, with the exception of this
assertion, which is just wrong (at least according to our
interpretation, `type[Bar] != <class 'Bar'>`). I checked that we do
correctly default-specialize the type parameter which is not displayed
in the diagnostic that we raise.
```py
class Bar(SubclassMe[int, DefaultStrT]): ...

assert_type(Bar, type[Bar[str]])  # ty: Type `type[Bar[str]]` does not match asserted type `<class 'Bar'>`
```

## Ecosystem impact

Looks like I should have included this last week 😎 

## Test Plan

Updated pre-existing tests and add a few new ones.
2025-12-03 09:10:45 +01:00
Alex Waygood c5b8d551df
[ty] Suppress false positives when `dataclasses.dataclass(...)(cls)` is called imperatively (#21729)
Fixes https://github.com/astral-sh/ty/issues/1705
2025-12-03 08:05:25 +00:00
Ibraheem Ahmed 7b0aab1696
[ty] `type[T]` is assignable to an inferable typevar (#21766)
## Summary

Resolves https://github.com/astral-sh/ty/issues/1712.
2025-12-02 18:25:09 -05:00
Brent Westbrook 2250fa6f98
Fix syntax error false positives for `await` outside functions (#21763)
## Summary

Fixes #21750 and a related bug in `PLE1142`. We were not properly
considering generators to be valid `await` contexts, which caused the
`F704` issue. One of the tests I added for this also uncovered an issue
in `PLE1142` for comprehensions nested within async generators because
we were only checking the current scope rather than traversing the
nested context.

## Test Plan

Both of these rules are implemented as semantic syntax errors, so I
added tests (and fixes) in both Ruff and ty.
2025-12-02 21:02:02 +00:00
Alex Waygood 392a8e4e50
[ty] Improve diagnostics for unsupported comparison operations (#21737) 2025-12-02 19:58:45 +00:00
Micha Reiser 515de2d062
Move `Token`, `TokenKind` and `Tokens` to `ruff-python-ast` (#21760) 2025-12-02 20:10:46 +01:00
Douglas Creager 508c0a0861
[ty] Don't confuse multiple occurrences of `typing.Self` when binding bound methods (#21754)
In the following example, there are two occurrences of `typing.Self`,
one for `Foo.foo` and one for `Bar.bar`:

```py
from typing import Self, reveal_type

class Foo[T]:
    def foo(self: Self) -> T:
        raise NotImplementedError

class Bar:
    def bar(self: Self, x: Foo[Self]):
        # SHOULD BE: bound method Foo[Self@bar].foo() -> Self@bar
        # revealed: bound method Foo[Self@bar].foo() -> Foo[Self@bar]
        reveal_type(x.foo)

def f[U: Bar](x: Foo[U]):
    # revealed: bound method Foo[U@f].foo() -> U@f
    reveal_type(x.foo)
```

When accessing a bound method, we replace any occurrences of `Self` with
the bound `self` type.

We were doing this correctly for the second reveal. We would first apply
the specialization, getting `(self: Self@foo) -> U@F` as the signature
of `x.foo`. We would then bind the `self` parameter, substituting
`Self@foo` with `Foo[U@F]` as part of that. The return type was already
specialized to `U@F`, so that substitution had no further affect on the
type that we revealed.

In the first reveal, we would follow the same process, but we confused
the two occurrences of `Self`. We would first apply the specialization,
getting `(self: Self@foo) -> Self@bar` as the method signature. We would
then try to bind the `self` parameter, substituting `Self@foo` with
`Foo[Self@bar]`. However, because we didn't distinguish the two separate
`Self`s, and applied the substitution to the return type as well as to
the `self` parameter.

The fix is to track which particular `Self` we're trying to substitute
when applying the type mapping.

Fixes https://github.com/astral-sh/ty/issues/1713
2025-12-02 13:15:09 -05:00
Alex Waygood ac2552b11b
[ty] Move `all_members`, and related types/routines, out of `ide_support.rs` (#21695) 2025-12-02 14:45:24 +00:00
Micha Reiser 644096ea8a
[ty] Fix find-references for import aliases (#21736) 2025-12-02 14:37:50 +01:00
Aria Desires 015ab9e576
[ty] add tests for workspaces (#21741)
Here are a bunch of (variously failing and passing) mdtests that reflect
the kinds of issues people encounter when running ty over an entire
workspace without sufficient hand-holding (especially because in the IDE
it is unclear *how* to provide that hand-holding).
2025-12-02 06:43:41 -05:00
Douglas Creager cf4196466c
[ty] Stop testing the (brittle) constraint set display implementation (#21743)
The `Display` implementation for constraint sets is brittle, and
deserves a rethink. But later! It's perfectly fine for printf debugging;
we just shouldn't be writing mdtests that depend on any particular
rendering details. Most of these tests can be replaced with an
equivalence check that actually validates that the _behavior_ of two
constraint sets are identical.
2025-12-02 09:17:29 +01:00
Charlie Marsh 72304b01eb
[ty] Add a diagnostic for prohibited `NamedTuple` attribute overrides (#21717)
## Summary

Closes https://github.com/astral-sh/ty/issues/1684.
2025-12-01 21:46:58 -05:00
Ibraheem Ahmed ec854c7199
[ty] Fix subtyping with `type[T]` and unions (#21740)
## Summary

Resolves
https://github.com/astral-sh/ruff/pull/21685#issuecomment-3591695954.
2025-12-01 18:20:13 -05:00
Andrew Gallant a561e6659d [ty] Exclude `typing_extensions` from completions unless it's really available
This works by adding a third module resolution mode that lets the caller
opt into _some_ shadowing of modules that is otherwise not allowed (for
`typing` and `typing_extensions`).

Fixes astral-sh/ty#1658
2025-12-01 11:24:16 -05:00
Alex Waygood 0e651b50b7
[ty] Fix false positives for `class F(Generic[*Ts]): ...` (#21723) 2025-12-01 13:24:07 +00:00
David Peter 116fd7c7af
[ty] Remove `GenericAlias`-related todo type (#21728)
## Summary

If you manage to create an `typing.GenericAlias` instance without us
knowing how that was created, then we don't know what to do with this in
a type annotation. So it's better to be explicit and show an error
instead of failing silently with a `@Todo` type.

## Test Plan

* New Markdown tests
* Zero ecosystem impact
2025-12-01 13:02:38 +00:00
David Peter 5358ddae88
[ty] Exhaustiveness checking for generic classes (#21726)
## Summary

We had tests for this already, but they used generic classes that were
bivariant in their type parameter, and so this case wasn't captured.

closes https://github.com/astral-sh/ty/issues/1702

## Test Plan

Updated Markdown tests
2025-12-01 13:52:36 +01:00
Alex Waygood 3a11e714c6
[ty] Show the user where the type variable was defined in `invalid-type-arguments` diagnostics (#21727) 2025-12-01 12:25:49 +00:00
Alex Waygood a2096ee2cb
[ty] Emit `invalid-named-tuple` on namedtuple classes that have field names starting with underscores (#21697) 2025-12-01 11:36:02 +00:00
Carl Meyer c2773b4c6f
[ty] support `type[tuple[...]]` (#21652)
Fixes https://github.com/astral-sh/ty/issues/1649

## Summary

We missed this when adding support for `type[]` of a specialized
generic.

## Test Plan

Added mdtests.
2025-12-01 11:49:26 +01:00
David Peter bc6517a807
[ty] Add missing projects to `good.txt` (#21721)
## Summary

These projects from `mypy_primer` were missing from both `good.txt` and
`bad.txt` for some reason. I thought about writing a script that would
verify that `good.txt` + `bad.txt` = `mypy_primer.projects`, but that's
not completely trivial since there are projects like `cpython` only
appear once in `good.txt`. Given that we can hopefully soon get rid of
both of these files (and always run on all projects), it's probably not
worth the effort. We are usually notified of all `mypy_primer` changes.

## Test Plan

CI on this PR
2025-12-01 11:18:41 +01:00
Shunsuke Shibayama a6cbc138d2
[ty] remove the `visitor` parameter in the `recursive_type_normalized_impl` method (#21701) 2025-12-01 08:48:43 +01:00
Charlie Marsh e7beb7e1f4
[ty] Forbid use of `super()` in `NamedTuple` subclasses (#21700)
## Summary

The exact behavior around what's allowed vs. disallowed was partly
detected through trial and error in the runtime.

I was a little confused by [this
comment](https://github.com/python/cpython/pull/129352) that says
"`NamedTuple` subclasses cannot be inherited from" because in practice
that doesn't appear to error at runtime.

Closes [#1683](https://github.com/astral-sh/ty/issues/1683).
2025-11-30 15:49:06 +00:00
Alex Waygood b02e8212c9
[ty] Don't introduce invalid syntax when autofixing override-of-final-method (#21699) 2025-11-30 13:40:33 +00:00
Alex Waygood 69ace00210
[ty] Rename `types::liskov` to `types::overrides` (#21694) 2025-11-29 14:54:00 +00:00
Micha Reiser d40590c8f9
[ty] Add code action to ignore diagnostic on the current line (#21595) 2025-11-29 15:41:54 +01:00
RasmusNygren b2387f4eab
[ty] fix typo in HasDefinition trait docstring (#21689)
## Summary
Fixes a typo in the docstring for the definition method in the
HasDefinition trait
2025-11-29 11:13:54 +00:00
Dhruv Manilawala 8795d9f0cb
[ty] Split `ParamSpec` mdtests to separate legacy and PEP 695 tests (#21687)
## Summary

This is another small refactor for
https://github.com/astral-sh/ruff/pull/21445 that splits the single
`paramspec.md` into `generics/legacy/paramspec.md` and
`generics/pep695/paramspec.md`.

## Test Plan

Make sure that all mdtests pass.
2025-11-29 06:49:39 +00:00
David Peter 42f152108a
[ty] Generic types aliases (implicit and PEP 613) (#21553)
## Summary

Add support for generic PEP 613 type aliases and generic implicit type
aliases:
```py
from typing import TypeVar

T = TypeVar("T")
ListOrSet = list[T] | set[T]

def _(xs: ListOrSet[int]):
    reveal_type(xs)  # list[int] | set[int]
```

closes https://github.com/astral-sh/ty/issues/1643
closes https://github.com/astral-sh/ty/issues/1629
closes https://github.com/astral-sh/ty/issues/1596
closes https://github.com/astral-sh/ty/issues/573
closes https://github.com/astral-sh/ty/issues/221

## Typing conformance

```diff
-aliases_explicit.py:52:5: error[type-assertion-failure] Type `list[int]` does not match asserted type `@Todo(specialized generic alias in type expression)`
-aliases_explicit.py:53:5: error[type-assertion-failure] Type `tuple[str, ...] | list[str]` does not match asserted type `@Todo(Generic specialization of types.UnionType)`
-aliases_explicit.py:54:5: error[type-assertion-failure] Type `tuple[int, int, int, str]` does not match asserted type `@Todo(specialized generic alias in type expression)`
-aliases_explicit.py:56:5: error[type-assertion-failure] Type `(int, str, /) -> str` does not match asserted type `@Todo(Generic specialization of typing.Callable)`
-aliases_explicit.py:59:5: error[type-assertion-failure] Type `int | str | None | list[list[int]]` does not match asserted type `int | str | None | list[@Todo(specialized generic alias in type expression)]`
```

New true negatives ✔️ 

```diff
+aliases_explicit.py:41:36: error[invalid-type-arguments] Too many type arguments: expected 1, got 2
-aliases_explicit.py:57:5: error[type-assertion-failure] Type `(int, str, str, /) -> None` does not match asserted type `@Todo(Generic specialization of typing.Callable)`
+aliases_explicit.py:57:5: error[type-assertion-failure] Type `(int, str, str, /) -> None` does not match asserted type `(...) -> Unknown`
```

These require `ParamSpec`

```diff
+aliases_explicit.py:67:24: error[invalid-type-arguments] Too many type arguments: expected 0, got 1
+aliases_explicit.py:68:24: error[invalid-type-arguments] Too many type arguments: expected 0, got 1
+aliases_explicit.py:69:29: error[invalid-type-arguments] Too many type arguments: expected 1, got 2
+aliases_explicit.py:70:29: error[invalid-type-arguments] Too many type arguments: expected 1, got 2
+aliases_explicit.py:71:29: error[invalid-type-arguments] Too many type arguments: expected 1, got 2
+aliases_explicit.py:102:20: error[invalid-type-arguments] Too many type arguments: expected 0, got 1
```

New true positives ✔️ 

```diff
-aliases_implicit.py:63:5: error[type-assertion-failure] Type `list[int]` does not match asserted type `@Todo(specialized generic alias in type expression)`
-aliases_implicit.py:64:5: error[type-assertion-failure] Type `tuple[str, ...] | list[str]` does not match asserted type `@Todo(Generic specialization of types.UnionType)`
-aliases_implicit.py:65:5: error[type-assertion-failure] Type `tuple[int, int, int, str]` does not match asserted type `@Todo(specialized generic alias in type expression)`
-aliases_implicit.py:67:5: error[type-assertion-failure] Type `(int, str, /) -> str` does not match asserted type `@Todo(Generic specialization of typing.Callable)`
-aliases_implicit.py:70:5: error[type-assertion-failure] Type `int | str | None | list[list[int]]` does not match asserted type `int | str | None | list[@Todo(specialized generic alias in type expression)]`
-aliases_implicit.py:71:5: error[type-assertion-failure] Type `list[bool]` does not match asserted type `@Todo(specialized generic alias in type expression)`
```

New true negatives ✔️ 

```diff
+aliases_implicit.py:54:36: error[invalid-type-arguments] Too many type arguments: expected 1, got 2
-aliases_implicit.py:68:5: error[type-assertion-failure] Type `(int, str, str, /) -> None` does not match asserted type `@Todo(Generic specialization of typing.Callable)`
+aliases_implicit.py:68:5: error[type-assertion-failure] Type `(int, str, str, /) -> None` does not match asserted type `(...) -> Unknown`
```

These require `ParamSpec`

```diff
+aliases_implicit.py:76:24: error[invalid-type-arguments] Too many type arguments: expected 0, got 1
+aliases_implicit.py:77:24: error[invalid-type-arguments] Too many type arguments: expected 0, got 1
+aliases_implicit.py:78:29: error[invalid-type-arguments] Too many type arguments: expected 1, got 2
+aliases_implicit.py:79:29: error[invalid-type-arguments] Too many type arguments: expected 1, got 2
+aliases_implicit.py:80:29: error[invalid-type-arguments] Too many type arguments: expected 1, got 2
+aliases_implicit.py:81:25: error[invalid-type-arguments] Type `str` is not assignable to upper bound `int | float` of type variable `TFloat@GoodTypeAlias12`
+aliases_implicit.py:135:20: error[invalid-type-arguments] Too many type arguments: expected 0, got 1
```

New true positives ✔️ 

```diff
+callables_annotation.py:172:19: error[invalid-type-arguments] Too many type arguments: expected 0, got 1
+callables_annotation.py:175:19: error[invalid-type-arguments] Too many type arguments: expected 0, got 1
+callables_annotation.py:188:25: error[invalid-type-arguments] Too many type arguments: expected 0, got 1
+callables_annotation.py:189:25: error[invalid-type-arguments] Too many type arguments: expected 0, got 1
```

These require `ParamSpec` and `Concatenate`.

```diff
-generics_defaults_specialization.py:26:5: error[type-assertion-failure] Type `SomethingWithNoDefaults[int, str]` does not match asserted type `SomethingWithNoDefaults[int, typing.TypeVar]`
+generics_defaults_specialization.py:26:5: error[type-assertion-failure] Type `SomethingWithNoDefaults[int, str]` does not match asserted type `SomethingWithNoDefaults[int, DefaultStrT]`
```

Favorable diagnostic change ✔️ 

```diff
-generics_defaults_specialization.py:27:5: error[type-assertion-failure] Type `SomethingWithNoDefaults[int, bool]` does not match asserted type `@Todo(specialized generic alias in type expression)`
```

New true negative ✔️ 

```diff
-generics_defaults_specialization.py:30:1: error[non-subscriptable] Cannot subscript object of type `<class 'SomethingWithNoDefaults[int, typing.TypeVar]'>` with no `__class_getitem__` method
+generics_defaults_specialization.py:30:15: error[invalid-type-arguments] Too many type arguments: expected between 0 and 1, got 2
```

Correct new diagnostic ✔️ 


```diff
-generics_variance.py:175:25: error[non-subscriptable] Cannot subscript object of type `<class 'Contra[typing.TypeVar]'>` with no `__class_getitem__` method
-generics_variance.py:175:35: error[non-subscriptable] Cannot subscript object of type `<class 'Co[typing.TypeVar]'>` with no `__class_getitem__` method
-generics_variance.py:179:29: error[non-subscriptable] Cannot subscript object of type `<class 'Contra[typing.TypeVar]'>` with no `__class_getitem__` method
-generics_variance.py:179:39: error[non-subscriptable] Cannot subscript object of type `<class 'Contra[typing.TypeVar]'>` with no `__class_getitem__` method
-generics_variance.py:183:21: error[non-subscriptable] Cannot subscript object of type `<class 'Co[typing.TypeVar]'>` with no `__class_getitem__` method
-generics_variance.py:183:27: error[non-subscriptable] Cannot subscript object of type `<class 'Co[typing.TypeVar]'>` with no `__class_getitem__` method
-generics_variance.py:187:25: error[non-subscriptable] Cannot subscript object of type `<class 'Co[typing.TypeVar]'>` with no `__class_getitem__` method
-generics_variance.py:187:31: error[non-subscriptable] Cannot subscript object of type `<class 'Contra[typing.TypeVar]'>` with no `__class_getitem__` method
-generics_variance.py:191:33: error[non-subscriptable] Cannot subscript object of type `<class 'Contra[typing.TypeVar]'>` with no `__class_getitem__` method
-generics_variance.py:191:43: error[non-subscriptable] Cannot subscript object of type `<class 'Co[typing.TypeVar]'>` with no `__class_getitem__` method
-generics_variance.py:191:49: error[non-subscriptable] Cannot subscript object of type `<class 'Contra[typing.TypeVar]'>` with no `__class_getitem__` method
-generics_variance.py:196:5: error[non-subscriptable] Cannot subscript object of type `<class 'Contra[typing.TypeVar]'>` with no `__class_getitem__` method
-generics_variance.py:196:15: error[non-subscriptable] Cannot subscript object of type `<class 'Contra[typing.TypeVar]'>` with no `__class_getitem__` method
-generics_variance.py:196:25: error[non-subscriptable] Cannot subscript object of type `<class 'Contra[typing.TypeVar]'>` with no `__class_getitem__` method
```

One of these should apparently be an error, but not of this kind, so
this is good ✔️

```diff
-specialtypes_type.py:152:16: error[invalid-type-form] `typing.TypeVar` is not a generic class
-specialtypes_type.py:156:16: error[invalid-type-form] `typing.TypeVar` is not a generic class
```

Good, those were false positives. ✔️ 

I skipped the analysis for everything involving `TypeVarTuple`.

## Ecosystem impact

**[Full report with detailed
diff](https://david-generic-implicit-alias.ecosystem-663.pages.dev/diff)**

Previous iterations of this PR showed all kinds of problems. In it's
current state, I do not see any large systematic problems, but it is
hard to tell with 5k diagnostic changes.

## Performance

* There is a huge 4x regression in `colour-science/colour`, related to
[this large
file](https://github.com/colour-science/colour/blob/develop/colour/io/luts/tests/test_lut.py)
with [many assignments of hard-coded arrays (lists of lists) to
`np.NDArray`
types](83e754c8b6/colour/io/luts/tests/test_lut.py (L701-L781))
that we now understand. We now take ~2 seconds to check this file, so
definitely not great, but maybe acceptable for now.

## Test Plan

Updated and new Markdown tests
2025-11-28 20:38:24 +01:00
Alex Waygood 594b7b04d3
[ty] Preserve quoting style when autofixing `TypedDict` keys (#21682) 2025-11-28 18:40:34 +00:00
Matthew Mckee b5b4917d7f
[ty] Fix override of final method summary (#21681) 2025-11-28 16:18:22 +00:00
David Peter 0084e94f78
[ty] Fix subtyping of `type[Any]` / `type[T]` and protocols (#21678)
## Summary

This is a bugfix for subtyping of `type[Any]` / `type[T]` and protocols.

## Test Plan

Regression test that will only be really meaningful once
https://github.com/astral-sh/ruff/pull/21553 lands.
2025-11-28 16:56:22 +01:00
Alex Waygood 8bcfc198b8
[ty] Implement `typing.final` for methods (#21646)
Co-authored-by: Micha Reiser <micha@reiser.io>
2025-11-28 15:18:02 +00:00
Aria Desires c534bfaf01
[ty] Implement patterns and typevars in the LSP (#21671)
## Summary

**This is the final goto-targets with missing
goto-definition/declaration implementations!
You can now theoretically click on all the user-defined names in all the
syntax. 🎉**

This adds:

* goto definition/declaration on patterns/typevars
* find-references/rename on patterns/typevars
* fixes syntax highlighting of `*rest` patterns

This notably *does not* add:

* goto-type for patterns/typevars 
* hover for patterns/typevars (because that's just goto-type for names)

Also I realized we were at the precipice of one of the great GotoTarget
sins being resolved, and so I made import aliases also resolve to a
ResolvedDefinition. This removes a ton of cruft and prevents further
backsliding.

Note however that import aliases are, in general, completely jacked up
when it comes to find-references/renames (both before and after this
PR). Previously you could try to rename an import alias and it just
wouldn't do anything. With this change we instead refuse to even let you
try to rename it.

Sorting out why import aliases are jacked up is an ongoing thing I hope
to handle in a followup.

## Test Plan

You'll surely not regret checking in 86 snapshot tests
2025-11-28 13:41:21 +00:00
Dhruv Manilawala 98681b9356
[ty] Add `db` parameter to `Parameters::new` method (#21674)
## Summary

This PR adds a new `db` parameter to `Parameters::new` for
https://github.com/astral-sh/ruff/pull/21445. This change creates a
large diff so thought to split it out as it's just a mechanical change.

The `Parameters::new` method not only creates the `Parameters` but also
analyses the parameters to check what kind it is. For `ParamSpec`
support, it's going to require the `db` to check whether the annotated
type is `ParamSpec` or not. For the current set of parameters that isn't
required because it's only checking whether it's dynamic or not which
doesn't require `db`.
2025-11-28 12:29:58 +00:00
Ibraheem Ahmed 3ed537e9f1
[ty] Support `type[T]` with type variables (#21650)
## Summary

Adds support for `type[T]`, where `T` is a type variable.

- Resolves https://github.com/astral-sh/ty/issues/501
- Resolves https://github.com/astral-sh/ty/issues/783
- Resolves https://github.com/astral-sh/ty/issues/662
2025-11-28 09:20:24 +01:00
Alex Waygood 53efc82989
[ty] Include all members on `type` in autocompletion suggestions for `type[]` types (#21670) 2025-11-27 19:29:25 +00:00
Alex Waygood aef2fad0c5
[ty] Add IDE autofixes for two "Did you mean...?" suggestions (#21667) 2025-11-27 18:20:02 +00:00
Aria Desires e5818d89fd
[ty] Add "import ..." code-action for unresolved references (#21629)
## Summary

Originally I planned to feed this in as a `fix` but I realized that we
probably don't want to be trying to resolve import suggestions while
we're doing type inference. Thus I implemented this as a fallback when
there's no fixes on a diagnostic, which can use the full lsp machinery.

Fixes https://github.com/astral-sh/ty/issues/1552

## Test Plan

Works in the IDE, added some e2e tests.
2025-11-27 10:06:38 -05:00
Alex Waygood a7d48ffd40
[ty] Add subdiagnostic hint if a variable with type `Never` is used in a type expression (#21660) 2025-11-27 12:48:18 +00:00
Carl Meyer 77f8fa6906
[ty] more precise inference for a failed specialization (#21651)
## Summary

Previously if an explicit specialization failed (e.g. wrong number of
type arguments or violates an upper bound) we just inferred `Unknown`
for the entire type. This actually caused us to panic on an a case of a
recursive upper bound with invalid specialization; the upper bound would
oscillate indefinitely in fixpoint iteration between `Unknown` and the
given specialization. This could be fixed with a cycle recovery
function, but in this case there's a simpler fix: if we infer
`C[Unknown]` instead of `Unknown` for an invalid attempt to specialize
`C`, that allows fixpoint iteration to quickly converge, as well as
giving a more precise type inference.

Other type checkers actually just go with the attempted specialization
even if it's invalid. So if `C` has a type parameter with upper bound
`int`, and you say `C[str]`, they'll emit a diagnostic but just go with
`C[str]`. Even weirder, if `C` has a single type parameter and you say
`C[str, bytes]`, they'll just go with `C[str]` as the type. I'm not
convinced by this approach; it seems odd to have specializations
floating around that explicitly violate the declared upper bound, or in
the latter case aren't even the specialization the annotation requested.
I prefer `C[Unknown]` for this case.

Fixing this revealed an issue with `collections.namedtuple`, which
returns `type[tuple[Any, ...]]`. Due to
https://github.com/astral-sh/ty/issues/1649 we consider that to be an
invalid specialization. So previously we returned `Unknown`; after this
PR it would be `type[tuple[Unknown]]`, leading to more false positives
from our lack of functional namedtuple support. To avoid that I added an
explicit Todo type for functional namedtuples for now.

## Test Plan

Added and updated mdtests.

The conformance suite changes have to do with `ParamSpec`, so no
meaningful signal there.

The ecosystem changes appear to be the expected effects of having more
precise type information (including occurrences of known issues such as
https://github.com/astral-sh/ty/issues/1495 ). Most effects are just
changes to types in diagnostics.
2025-11-27 13:44:28 +01:00
Alex Waygood 792ec3e96e
Improve docs on how to stop Ruff and ty disagreeing with each other (#21644)
## Summary

Lots of Ruff rules encourage you to make changes that might then cause
ty to start complaining about Liskov violations. Most of these Ruff
rules already refrain from complaining about a method if they see that
the method is decorated with `@override`, but this usually isn't
documented. This PR updates the docs of many Ruff rules to note that
they refrain from complaining about `@override`-decorated methods, and
also adds a similar note to the ty `invalid-method-override`
documentation.

Helps with
https://github.com/astral-sh/ty/issues/1644#issuecomment-3581663859

## Test Plan

- `uvx prek run -a` locally
- CI on this PR
2025-11-27 08:18:21 +00:00
Dhruv Manilawala c7107a5a90
[ty] Use `zip` to perform explicit specialization (#21635)
## Summary

This PR updates the explicit specialization logic to avoid using the
call machinery.

Previously, the logic would use the call machinery by converting the
list of type variables into a `Binding` with a single `Signature` where
all the type variables are positional-only parameters with bounds and
constraints as the annotated type and the default type as the default
parameter value. This has the advantage that it doesn't need to
implement any specific logic but the disadvantages are subpar diagnostic
messages as it would use the ones specific to a function call. But, an
important disadvantage is that the kind of type variable is lost in this
translation which becomes important in #21445 where a `ParamSpec` can
specialize into a list of types which is provided using list literal.
For example,

```py
class Foo[T, **P]: ...

Foo[int, [int, str]]
```

This PR converts the logic to use a simple loop using `zip_longest` as
all type variables and their corresponding type argument maps on a 1-1
basis. They cannot be specified using keyword argument either e.g.,
`dict[_VT=str, _KT=int]` is invalid.

This PR also makes an initial attempt to improve the diagnostic message
to specifically target the specialization part by using words like "type
argument" instead of just "argument" and including information like the
type variable, bounds, and constraints. Further improvements can be made
by highlighting the type variable definition or the bounds / constraints
as a sub-diagnostic but I'm going to leave that as a follow-up.

## Test Plan

Update messages in existing test cases.
2025-11-27 03:52:22 +00:00
Carl Meyer e0f3a064b9
[ty] don't iterate over a hashset (#21649)
## Summary

This caused "deterministic but chaotic" ordering of some intersection
types in diagnostics. When calling a union, we infer the argument type
once per matching parameter type, intersecting the inferred types for
the argument expression, and we did that in an unpredictable order.

We do need a hashset here for de-duplication. Sometimes we call large
unions where the type for a given parameter is the same across the
union, we should infer the argument once per parameter type, not once
per union element. So use an `FxIndexSet` instead of an `FxHashSet`.

## Test Plan

With this change, switching between `main` and
https://github.com/astral-sh/ruff/pull/21646 no longer changes the
ordering of the intersection type in the test in
cca3a8045d
2025-11-26 16:39:49 -08:00
Shunsuke Shibayama 2c0c5ff4e7
[ty] handle recursive type inference properly (#20566)
## Summary

Derived from #17371

Fixes astral-sh/ty#256
Fixes https://github.com/astral-sh/ty/issues/1415
Fixes https://github.com/astral-sh/ty/issues/1433
Fixes https://github.com/astral-sh/ty/issues/1524

Properly handles any kind of recursive inference and prevents panics.

---

Let me explain techniques for converging fixed-point iterations during
recursive type inference.
There are two types of type inference that naively don't converge
(causing salsa to panic): divergent type inference and oscillating type
inference.

### Divergent type inference

Divergent type inference occurs when eagerly expanding a recursive type.
A typical example is this:

```python
class C:
    def f(self, other: "C"):
        self.x = (other.x, 1)

reveal_type(C().x) # revealed: Unknown | tuple[Unknown | tuple[Unknown | tuple[..., Literal[1]], Literal[1]], Literal[1]]
```

To solve this problem, we have already introduced `Divergent` types
(https://github.com/astral-sh/ruff/pull/20312). `Divergent` types are
treated as a kind of dynamic type [^1].

```python
Unknown | tuple[Unknown | tuple[Unknown | tuple[..., Literal[1]], Literal[1]], Literal[1]]
=> Unknown | tuple[Divergent, Literal[1]]
```

When a query function that returns a type enters a cycle, it sets
`Divergent` as the cycle initial value (instead of `Never`). Then, in
the cycle recovery function, it reduces the nesting of types containing
`Divergent` to converge.

```python
0th: Divergent
1st: Unknown | tuple[Divergent, Literal[1]]
2nd: Unknown | tuple[Unknown | tuple[Divergent, Literal[1]], Literal[1]]
=> Unknown | tuple[Divergent, Literal[1]]
```

Each cycle recovery function for each query should operate only on the
`Divergent` type originating from that query.
For this reason, while `Divergent` appears the same as `Any` to the
user, it internally carries some information: the location where the
cycle occurred. Previously, we roughly identified this by having the
scope where the cycle occurred, but with the update to salsa, functions
that create cycle initial values ​​can now receive a `salsa::Id`
(https://github.com/salsa-rs/salsa/pull/1012). This is an opaque ID that
uniquely identifies the cycle head (the query that is the starting point
for the fixed-point iteration). `Divergent` now has this `salsa::Id`.

### Oscillating type inference

Now, another thing to consider is oscillating type inference.
Oscillating type inference arises from the fact that monotonicity is
broken. Monotonicity here means that for a query function, if it enters
a cycle, the calculation must start from a "bottom value" and progress
towards the final result with each cycle. Monotonicity breaks down in
type systems that have features like overloading and overriding.

```python
class Base:
    def flip(self) -> "Sub":
        return Sub()

class Sub(Base):
    def flip(self) -> "Base":
        return Base()

class C:
    def __init__(self, x: Sub):
        self.x = x

    def replace_with(self, other: "C"):
        self.x = other.x.flip()

reveal_type(C(Sub()).x)
```

Naive fixed-point iteration results in `Divergent -> Sub -> Base -> Sub
-> ...`, which oscillates forever without diverging or converging. To
address this, the salsa API has been modified so that the cycle recovery
function receives the value of the previous cycle
(https://github.com/salsa-rs/salsa/pull/1012).
The cycle recovery function returns the union type of the current cycle
and the previous cycle. In the above example, the result type for each
cycle is `Divergent -> Sub -> Base (= Sub | Base) -> Base`, which
converges.

The final result of oscillating type inference does not contain
`Divergent` because `Divergent` that appears in a union type can be
removed, as is clear from the expansion. This simplification is
performed at the same time as nesting reduction.

```
T | Divergent = T | (T | (T | ...)) = T
```

[^1]: In theory, it may be possible to strictly treat types containing
`Divergent` types as recursive types, but we probably shouldn't go that
deep yet. (AFAIK, there are no PEPs that specify how to handle
implicitly recursive types that aren't named by type aliases)

## Performance analysis

A happy side effect of this PR is that we've observed widespread
performance improvements!
This is likely due to the removal of the `ITERATIONS_BEFORE_FALLBACK`
and max-specialization depth trick
(https://github.com/astral-sh/ty/issues/1433,
https://github.com/astral-sh/ty/issues/1415), which means we reach a
fixed point much sooner.

## Ecosystem analysis

The changes look good overall.
You may notice changes in the converged values ​​for recursive types,
this is because the way recursive types are normalized has been changed.
Previously, types containing `Divergent` types were normalized by
replacing them with the `Divergent` type itself, but in this PR, types
with a nesting level of 2 or more that contain `Divergent` types are
normalized by replacing them with a type with a nesting level of 1. This
means that information about the non-divergent parts of recursive types
is no longer lost.

```python
# previous
tuple[tuple[Divergent, int], int] => Divergent
# now
tuple[tuple[Divergent, int], int] => tuple[Divergent, int]
```

The false positive error introduced in this PR occurs in class
definitions with self-referential base classes, such as the one below.

```python
from typing_extensions import Generic, TypeVar

T = TypeVar("T")
U = TypeVar("U")

class Base2(Generic[T, U]): ...

# TODO: no error
# error: [unsupported-base] "Unsupported class base with type `<class 'Base2[Sub2, U@Sub2]'> | <class 'Base2[Sub2[Unknown], U@Sub2]'>`"
class Sub2(Base2["Sub2", U]): ...
```

This is due to the lack of support for unions of MROs, or because cyclic
legacy generic types are not inferred as generic types early in the
query cycle.

## Test Plan

All samples listed in astral-sh/ty#256 are tested and passed without any
panic!

## Acknowledgments

Thanks to @MichaReiser for working on bug fixes and improvements to
salsa for this PR. @carljm also contributed early on to the discussion
of the query convergence mechanism proposed in this PR.

---------

Co-authored-by: Carl Meyer <carl@astral.sh>
2025-11-26 08:50:26 -08:00