ruff/crates/ty_python_semantic/resources/mdtest/binary/integers.md

7.0 KiB

Binary operations on integers

Basic Arithmetic

reveal_type(2 + 1)  # revealed: Literal[3]
reveal_type(3 - 4)  # revealed: Literal[-1]
reveal_type(3 * -1)  # revealed: Literal[-3]
reveal_type(-3 // 3)  # revealed: Literal[-1]
reveal_type(-3 / 3)  # revealed: float
reveal_type(5 % 3)  # revealed: Literal[2]
reveal_type(3 | 4)  # revealed: Literal[7]
reveal_type(5 & 6)  # revealed: Literal[4]
reveal_type(7 ^ 2)  # revealed: Literal[5]

# error: [unsupported-operator] "Operator `+` is unsupported between objects of type `Literal[2]` and `Literal["f"]`"
reveal_type(2 + "f")  # revealed: Unknown

def lhs(x: int):
    reveal_type(x + 1)  # revealed: int
    reveal_type(x - 4)  # revealed: int
    reveal_type(x * -1)  # revealed: int
    reveal_type(x // 3)  # revealed: int
    reveal_type(x / 3)  # revealed: int | float
    reveal_type(x % 3)  # revealed: int

def rhs(x: int):
    reveal_type(2 + x)  # revealed: int
    reveal_type(3 - x)  # revealed: int
    reveal_type(3 * x)  # revealed: int
    reveal_type(-3 // x)  # revealed: int
    reveal_type(-3 / x)  # revealed: int | float
    reveal_type(5 % x)  # revealed: int

def both(x: int):
    reveal_type(x + x)  # revealed: int
    reveal_type(x - x)  # revealed: int
    reveal_type(x * x)  # revealed: int
    reveal_type(x // x)  # revealed: int
    reveal_type(x / x)  # revealed: int | float
    reveal_type(x % x)  # revealed: int

# Edge case where negation leads to overflow:
i64_max = 9223372036854775807
i64_min = -i64_max - 1
reveal_type(i64_max)  # revealed: Literal[9223372036854775807]
reveal_type(i64_min)  # revealed: Literal[-9223372036854775808]
reveal_type(-i64_min)  # revealed: int

Power

For power if the result fits in the int literal type it will be a Literal type. Otherwise the outcome is int.

largest_u32 = 4_294_967_295
reveal_type(2**2)  # revealed: Literal[4]
reveal_type(1 ** (largest_u32 + 1))  # revealed: int
reveal_type(2**largest_u32)  # revealed: int

def variable(x: int):
    reveal_type(x**2)  # revealed: int
    # TODO: should be `Any` (overload 5 on `__pow__`), requires correct overload matching
    reveal_type(2**x)  # revealed: int
    # TODO: should be `Any` (overload 5 on `__pow__`), requires correct overload matching
    reveal_type(x**x)  # revealed: int

If the second argument is <0, a float is returned at runtime. If the first argument is <0 but the second argument is >=0, an int is still returned:

reveal_type(1**0)  # revealed: Literal[1]
reveal_type(0**1)  # revealed: Literal[0]
reveal_type(0**0)  # revealed: Literal[1]
reveal_type((-1) ** 2)  # revealed: Literal[1]
reveal_type(2 ** (-1))  # revealed: float
reveal_type((-1) ** (-1))  # revealed: float

Division and Modulus

Division works differently in Python than in Rust. If the result is negative and there is a remainder, the division rounds down (instead of towards zero). The remainder needs to be adjusted to compensate so that (lhs // rhs) * rhs + (lhs % rhs) == lhs:

reveal_type(256 % 129)  # revealed: Literal[127]
reveal_type(-256 % 129)  # revealed: Literal[2]
reveal_type(256 % -129)  # revealed: Literal[-2]
reveal_type(-256 % -129)  # revealed: Literal[-127]

reveal_type(129 % 16)  # revealed: Literal[1]
reveal_type(-129 % 16)  # revealed: Literal[15]
reveal_type(129 % -16)  # revealed: Literal[-15]
reveal_type(-129 % -16)  # revealed: Literal[-1]

reveal_type(10 // 8)  # revealed: Literal[1]
reveal_type(-10 // 8)  # revealed: Literal[-2]
reveal_type(10 // -8)  # revealed: Literal[-2]
reveal_type(-10 // -8)  # revealed: Literal[1]

reveal_type(10 // 6)  # revealed: Literal[1]
reveal_type(-10 // 6)  # revealed: Literal[-2]
reveal_type(10 // -6)  # revealed: Literal[-2]
reveal_type(-10 // -6)  # revealed: Literal[1]

Division by Zero

This error is really outside the current Python type system, because e.g. int.__truediv__ and friends are not annotated to indicate that it's an error, and we don't even have a facility to permit such an annotation. So arguably divide-by-zero should be a lint error rather than a type checker error. But we choose to go ahead and error in the cases that are very likely to be an error: dividing something typed as int or float by something known to be Literal[0].

This isn't definitely an error, because the object typed as int or float could be an instance of a custom subclass which overrides division behavior to handle zero without error. But if this unusual case occurs, the error can be avoided by explicitly typing the dividend as that safe custom subclass; we only emit the error if the LHS type is exactly int or float, not if its a subclass.

a = 1 / 0  # error: "Cannot divide object of type `Literal[1]` by zero"
reveal_type(a)  # revealed: float

b = 2 // 0  # error: "Cannot floor divide object of type `Literal[2]` by zero"
reveal_type(b)  # revealed: int

c = 3 % 0  # error: "Cannot reduce object of type `Literal[3]` modulo zero"
reveal_type(c)  # revealed: int

# error: "Cannot divide object of type `int` by zero"
reveal_type(int() / 0)  # revealed: int | float

# error: "Cannot divide object of type `Literal[1]` by zero"
reveal_type(1 / False)  # revealed: float
# error: [literal-math-error] "Cannot divide object of type `Literal[True]` by zero"
True / False
# error: [literal-math-error] "Cannot divide object of type `Literal[True]` by zero"
bool(1) / False

# error: "Cannot divide object of type `float` by zero"
reveal_type(1.0 / 0)  # revealed: int | float

# error: "Cannot divide object of type `complex` by zero"
reveal_type(0j / 0)  # revealed: int | float | complex

class MyInt(int): ...

# No error for a subclass of int
reveal_type(MyInt(3) / 0)  # revealed: int | float

Bit-shifting

Literal arithmetic is supported for bit-shifting operations on ints:

reveal_type(42 << 3)  # revealed: Literal[336]
reveal_type(0 << 3)  # revealed: Literal[0]
reveal_type(-42 << 3)  # revealed: Literal[-336]

reveal_type(42 >> 3)  # revealed: Literal[5]
reveal_type(0 >> 3)  # revealed: Literal[0]
reveal_type(-42 >> 3)  # revealed: Literal[-6]

If the result of a left shift overflows the int literal type, it becomes int. Right shifts do not overflow:

reveal_type(42 << 100)  # revealed: int
reveal_type(0 << 100)  # revealed: int
reveal_type(-42 << 100)  # revealed: int

reveal_type(42 >> 100)  # revealed: Literal[0]
reveal_type(0 >> 100)  # revealed: Literal[0]
reveal_type(-42 >> 100)  # revealed: Literal[-1]

It is an error to shift by a negative value. This is handled similarly to ZeroDivisionError detection, above:

# error: [literal-math-error] "Cannot left shift object of type `Literal[42]` by a negative value"
reveal_type(42 << -3)  # revealed: int
# error: [literal-math-error]
reveal_type(0 << -3)  # revealed: int
# error: [literal-math-error]
reveal_type(-42 << -3)  # revealed: int

# error: [literal-math-error] "Cannot right shift object of type `Literal[42]` by a negative value"
reveal_type(42 >> -3)  # revealed: int
# error: [literal-math-error]
reveal_type(0 >> -3)  # revealed: int
# error: [literal-math-error]
reveal_type(-42 >> -3)  # revealed: int