23 KiB
PEP 695 ParamSpec
ParamSpec was introduced in Python 3.12 while the support for specifying defaults was added in
Python 3.13.
[environment]
python-version = "3.13"
Definition
def foo1[**P]() -> None:
reveal_type(P) # revealed: ParamSpec
Bounds and constraints
ParamSpec, when defined using the new syntax, does not allow defining bounds or constraints.
TODO: This results in a lot of syntax errors mainly because the AST doesn't accept them in this position. The parser could do a better job in recovering from these errors.
# error: [invalid-syntax]
# error: [invalid-syntax]
# error: [invalid-syntax]
# error: [invalid-syntax]
# error: [invalid-syntax]
# error: [invalid-syntax]
def foo[**P: int]() -> None:
# error: [invalid-syntax]
# error: [invalid-syntax]
pass
Default
The default value for a ParamSpec can be either a list of types, ..., or another ParamSpec.
def foo2[**P = ...]() -> None:
reveal_type(P) # revealed: ParamSpec
def foo3[**P = [int, str]]() -> None:
reveal_type(P) # revealed: ParamSpec
def foo4[**P, **Q = P]():
reveal_type(P) # revealed: ParamSpec
reveal_type(Q) # revealed: ParamSpec
Other values are invalid.
# error: [invalid-paramspec]
def foo[**P = int]() -> None:
pass
Validating ParamSpec usage
ParamSpec is only valid as the first element to Callable or the final element to Concatenate.
from typing import ParamSpec, Callable, Concatenate
def valid[**P](
a1: Callable[P, int],
a2: Callable[Concatenate[int, P], int],
) -> None: ...
def invalid[**P](
# TODO: error
a1: P,
# TODO: error
a2: list[P],
# TODO: error
a3: Callable[[P], int],
# TODO: error
a4: Callable[..., P],
# TODO: error
a5: Callable[Concatenate[P, ...], int],
) -> None: ...
Validating P.args and P.kwargs usage
The components of ParamSpec i.e., P.args and P.kwargs are only valid when used as the
annotated types of *args and **kwargs respectively.
from typing import Callable
def foo[**P](c: Callable[P, int]) -> None:
def nested1(*args: P.args, **kwargs: P.kwargs) -> None: ...
# error: [invalid-type-form] "`P.kwargs` is valid only in `**kwargs` annotation: Did you mean `P.args`?"
# error: [invalid-type-form] "`P.args` is valid only in `*args` annotation: Did you mean `P.kwargs`?"
def nested2(*args: P.kwargs, **kwargs: P.args) -> None: ...
# TODO: error
def nested3(*args: P.args) -> None: ...
# TODO: error
def nested4(**kwargs: P.kwargs) -> None: ...
# TODO: error
def nested5(*args: P.args, x: int, **kwargs: P.kwargs) -> None: ...
And, they need to be used together.
def foo[**P](c: Callable[P, int]) -> None:
# TODO: error
def nested1(*args: P.args) -> None: ...
# TODO: error
def nested2(**kwargs: P.kwargs) -> None: ...
class Foo[**P]:
# TODO: error
args: P.args
# TODO: error
kwargs: P.kwargs
The name of these parameters does not need to be args or kwargs, it's the annotated type to the
respective variadic parameter that matters.
class Foo3[**P]:
def method1(self, *paramspec_args: P.args, **paramspec_kwargs: P.kwargs) -> None: ...
def method2(
self,
# error: [invalid-type-form] "`P.kwargs` is valid only in `**kwargs` annotation: Did you mean `P.args`?"
*paramspec_args: P.kwargs,
# error: [invalid-type-form] "`P.args` is valid only in `*args` annotation: Did you mean `P.kwargs`?"
**paramspec_kwargs: P.args,
) -> None: ...
It isn't allowed to annotate an instance attribute either:
class Foo4[**P]:
def __init__(self, fn: Callable[P, int], *args: P.args, **kwargs: P.kwargs) -> None:
self.fn = fn
# TODO: error
self.args: P.args = args
# TODO: error
self.kwargs: P.kwargs = kwargs
Semantics of P.args and P.kwargs
The type of args and kwargs inside the function is P.args and P.kwargs respectively instead
of tuple[P.args, ...] and dict[str, P.kwargs].
Passing *args and **kwargs to a callable
from typing import Callable
def f[**P](func: Callable[P, int]) -> Callable[P, None]:
def wrapper(*args: P.args, **kwargs: P.kwargs) -> None:
reveal_type(args) # revealed: P@f.args
reveal_type(kwargs) # revealed: P@f.kwargs
reveal_type(func(*args, **kwargs)) # revealed: int
# error: [invalid-argument-type] "Argument is incorrect: Expected `P@f.args`, found `P@f.kwargs`"
# error: [invalid-argument-type] "Argument is incorrect: Expected `P@f.kwargs`, found `P@f.args`"
reveal_type(func(*kwargs, **args)) # revealed: int
# error: [invalid-argument-type] "Argument is incorrect: Expected `P@f.args`, found `P@f.kwargs`"
reveal_type(func(args, kwargs)) # revealed: int
# Both parameters are required
# TODO: error
reveal_type(func()) # revealed: int
reveal_type(func(*args)) # revealed: int
reveal_type(func(**kwargs)) # revealed: int
return wrapper
Operations on P.args and P.kwargs
The type of P.args and P.kwargs behave like a tuple and dict respectively. Internally, they
are represented as a type variable that has an upper bound of tuple[object, ...] and
Top[dict[str, Any]] respectively.
from typing import Callable, Any
def f[**P](func: Callable[P, int], *args: P.args, **kwargs: P.kwargs) -> None:
reveal_type(args + ("extra",)) # revealed: tuple[object, ...]
reveal_type(args + (1, 2, 3)) # revealed: tuple[object, ...]
reveal_type(args[0]) # revealed: object
reveal_type("key" in kwargs) # revealed: bool
reveal_type(kwargs.get("key")) # revealed: object
reveal_type(kwargs["key"]) # revealed: object
Specializing generic classes explicitly
from typing import Any, Callable, ParamSpec
class OnlyParamSpec[**P1]:
attr: Callable[P1, None]
class TwoParamSpec[**P1, **P2]:
attr1: Callable[P1, None]
attr2: Callable[P2, None]
class TypeVarAndParamSpec[T1, **P1]:
attr: Callable[P1, T1]
Explicit specialization of a generic class involving ParamSpec is done by providing either a list
of types, ..., or another in-scope ParamSpec.
reveal_type(OnlyParamSpec[[]]().attr) # revealed: () -> None
reveal_type(OnlyParamSpec[[int, str]]().attr) # revealed: (int, str, /) -> None
reveal_type(OnlyParamSpec[...]().attr) # revealed: (...) -> None
def func[**P2](c: Callable[P2, None]):
reveal_type(OnlyParamSpec[P2]().attr) # revealed: (**P2@func) -> None
P2 = ParamSpec("P2")
# error: [invalid-type-arguments] "ParamSpec `P2` is unbound"
reveal_type(OnlyParamSpec[P2]().attr) # revealed: (...) -> None
# error: [invalid-type-arguments] "No type argument provided for required type variable `P1` of class `OnlyParamSpec`"
reveal_type(OnlyParamSpec[()]().attr) # revealed: (...) -> None
An explicit tuple expression (unlike an implicit one that omits the parentheses) is also accepted
when the ParamSpec is the only type variable. But, this isn't recommended is mainly a fallout of
it having the same AST as the one without the parentheses. Both mypy and Pyright also allow this.
reveal_type(OnlyParamSpec[(int, str)]().attr) # revealed: (int, str, /) -> None
# error: [invalid-syntax]
reveal_type(OnlyParamSpec[]().attr) # revealed: (...) -> None
The square brackets can be omitted when ParamSpec is the only type variable
reveal_type(OnlyParamSpec[int, str]().attr) # revealed: (int, str, /) -> None
reveal_type(OnlyParamSpec[int,]().attr) # revealed: (int, /) -> None
# Even when there is only one element
reveal_type(OnlyParamSpec[Any]().attr) # revealed: (Any, /) -> None
reveal_type(OnlyParamSpec[object]().attr) # revealed: (object, /) -> None
reveal_type(OnlyParamSpec[int]().attr) # revealed: (int, /) -> None
But, they cannot be omitted when there are multiple type variables.
reveal_type(TypeVarAndParamSpec[int, []]().attr) # revealed: () -> int
reveal_type(TypeVarAndParamSpec[int, [int, str]]().attr) # revealed: (int, str, /) -> int
reveal_type(TypeVarAndParamSpec[int, [str]]().attr) # revealed: (str, /) -> int
reveal_type(TypeVarAndParamSpec[int, ...]().attr) # revealed: (...) -> int
# error: [invalid-type-arguments] "ParamSpec `P2` is unbound"
reveal_type(TypeVarAndParamSpec[int, P2]().attr) # revealed: (...) -> int
# error: [invalid-type-arguments] "Type argument for `ParamSpec` must be"
reveal_type(TypeVarAndParamSpec[int, int]().attr) # revealed: (...) -> int
# error: [invalid-type-arguments] "Type argument for `ParamSpec` must be"
reveal_type(TypeVarAndParamSpec[int, ()]().attr) # revealed: (...) -> int
# error: [invalid-type-arguments] "Type argument for `ParamSpec` must be"
reveal_type(TypeVarAndParamSpec[int, (int, str)]().attr) # revealed: (...) -> int
Nor can they be omitted when there are more than one ParamSpec.
p = TwoParamSpec[[int, str], [int]]()
reveal_type(p.attr1) # revealed: (int, str, /) -> None
reveal_type(p.attr2) # revealed: (int, /) -> None
# error: [invalid-type-arguments] "Type argument for `ParamSpec` must be either a list of types, `ParamSpec`, `Concatenate`, or `...`"
# error: [invalid-type-arguments] "Type argument for `ParamSpec` must be either a list of types, `ParamSpec`, `Concatenate`, or `...`"
TwoParamSpec[int, str]
Specializing ParamSpec type variable using typing.Any isn't explicitly allowed by the spec but
both mypy and Pyright allow this and there are usages of this in the wild e.g.,
staticmethod[Any, Any].
reveal_type(TypeVarAndParamSpec[int, Any]().attr) # revealed: (...) -> int
Specialization when defaults are involved
from typing import Callable, ParamSpec
class ParamSpecWithDefault1[**P1 = [int, str]]:
attr: Callable[P1, None]
reveal_type(ParamSpecWithDefault1().attr) # revealed: (int, str, /) -> None
reveal_type(ParamSpecWithDefault1[int]().attr) # revealed: (int, /) -> None
class ParamSpecWithDefault2[**P1 = ...]:
attr: Callable[P1, None]
reveal_type(ParamSpecWithDefault2().attr) # revealed: (...) -> None
reveal_type(ParamSpecWithDefault2[int, str]().attr) # revealed: (int, str, /) -> None
class ParamSpecWithDefault3[**P1, **P2 = P1]:
attr1: Callable[P1, None]
attr2: Callable[P2, None]
# `P1` hasn't been specialized, so it defaults to `...` gradual form
p1 = ParamSpecWithDefault3()
reveal_type(p1.attr1) # revealed: (...) -> None
reveal_type(p1.attr2) # revealed: (...) -> None
p2 = ParamSpecWithDefault3[[int, str]]()
reveal_type(p2.attr1) # revealed: (int, str, /) -> None
reveal_type(p2.attr2) # revealed: (int, str, /) -> None
p3 = ParamSpecWithDefault3[[int], [str]]()
reveal_type(p3.attr1) # revealed: (int, /) -> None
reveal_type(p3.attr2) # revealed: (str, /) -> None
class ParamSpecWithDefault4[**P1 = [int, str], **P2 = P1]:
attr1: Callable[P1, None]
attr2: Callable[P2, None]
p1 = ParamSpecWithDefault4()
reveal_type(p1.attr1) # revealed: (int, str, /) -> None
reveal_type(p1.attr2) # revealed: (int, str, /) -> None
p2 = ParamSpecWithDefault4[[int]]()
reveal_type(p2.attr1) # revealed: (int, /) -> None
reveal_type(p2.attr2) # revealed: (int, /) -> None
p3 = ParamSpecWithDefault4[[int], [str]]()
reveal_type(p3.attr1) # revealed: (int, /) -> None
reveal_type(p3.attr2) # revealed: (str, /) -> None
P2 = ParamSpec("P2")
# TODO: error: paramspec is out of scope
class ParamSpecWithDefault5[**P1 = P2]:
attr: Callable[P1, None]
Semantics
Most of these test cases are adopted from the
typing documentation on ParamSpec semantics.
Return type change using ParamSpec once
from typing import Callable
def converter[**P](func: Callable[P, int]) -> Callable[P, bool]:
def wrapper(*args: P.args, **kwargs: P.kwargs) -> bool:
func(*args, **kwargs)
return True
return wrapper
def f1(x: int, y: str) -> int:
return 1
# This should preserve all the information about the parameters of `f1`
f2 = converter(f1)
reveal_type(f2) # revealed: (x: int, y: str) -> bool
reveal_type(f1(1, "a")) # revealed: int
reveal_type(f2(1, "a")) # revealed: bool
# As it preserves the parameter kinds, the following should work as well
reveal_type(f2(1, y="a")) # revealed: bool
reveal_type(f2(x=1, y="a")) # revealed: bool
reveal_type(f2(y="a", x=1)) # revealed: bool
# error: [missing-argument] "No argument provided for required parameter `y`"
f2(1)
# error: [invalid-argument-type] "Argument is incorrect: Expected `int`, found `Literal["a"]`"
f2("a", "b")
The converter function act as a decorator here:
@converter
def f3(x: int, y: str) -> int:
return 1
reveal_type(f3) # revealed: (x: int, y: str) -> bool
reveal_type(f3(1, "a")) # revealed: bool
reveal_type(f3(x=1, y="a")) # revealed: bool
reveal_type(f3(1, y="a")) # revealed: bool
reveal_type(f3(y="a", x=1)) # revealed: bool
# error: [missing-argument] "No argument provided for required parameter `y`"
f3(1)
# error: [invalid-argument-type] "Argument is incorrect: Expected `int`, found `Literal["a"]`"
f3("a", "b")
Return type change using the same ParamSpec multiple times
from typing import Callable
def multiple[**P](func1: Callable[P, int], func2: Callable[P, int]) -> Callable[P, bool]:
def wrapper(*args: P.args, **kwargs: P.kwargs) -> bool:
func1(*args, **kwargs)
func2(*args, **kwargs)
return True
return wrapper
As per the spec,
A user may include the same
ParamSpecmultiple times in the arguments of the same function, to indicate a dependency between multiple arguments. In these cases a type checker may choose to solve to a common behavioral supertype (i.e. a set of parameters for which all of the valid calls are valid in both of the subtypes), but is not obligated to do so.
TODO: Currently, we don't do this
def xy(x: int, y: str) -> int:
return 1
def yx(y: int, x: str) -> int:
return 2
reveal_type(multiple(xy, xy)) # revealed: (x: int, y: str) -> bool
# The common supertype is `(int, str, /)` which is converting the positional-or-keyword parameters
# into positional-only parameters because the position of the types are the same.
# TODO: This shouldn't error
# error: [invalid-argument-type]
reveal_type(multiple(xy, yx)) # revealed: (x: int, y: str) -> bool
def keyword_only_with_default_1(*, x: int = 42) -> int:
return 1
def keyword_only_with_default_2(*, y: int = 42) -> int:
return 2
# The common supertype for two functions with only keyword-only parameters would be an empty
# parameter list i.e., `()`
# TODO: This shouldn't error
# error: [invalid-argument-type]
# revealed: (*, x: int = Literal[42]) -> bool
reveal_type(multiple(keyword_only_with_default_1, keyword_only_with_default_2))
def keyword_only1(*, x: int) -> int:
return 1
def keyword_only2(*, y: int) -> int:
return 2
# On the other hand, combining two functions with only keyword-only parameters does not have a
# common supertype, so it should result in an error.
# error: [invalid-argument-type] "Argument to function `multiple` is incorrect: Expected `(*, x: int) -> int`, found `def keyword_only2(*, y: int) -> int`"
reveal_type(multiple(keyword_only1, keyword_only2)) # revealed: (*, x: int) -> bool
Constructors of user-defined generic class on ParamSpec
from typing import Callable
class C[**P]:
f: Callable[P, int]
def __init__(self, f: Callable[P, int]) -> None:
self.f = f
# Note that the return type must match exactly, since C is invariant on the return type of C.f.
def f(x: int, y: str) -> int:
return True
c = C(f)
reveal_type(c.f) # revealed: (x: int, y: str) -> int
ParamSpec in prepended positional parameters
If one of these prepended positional parameters contains a free
ParamSpec, we consider that variable in scope for the purposes of extracting the components of thatParamSpec.
from typing import Callable
def foo1[**P1](func: Callable[P1, int], *args: P1.args, **kwargs: P1.kwargs) -> int:
return func(*args, **kwargs)
def foo1_with_extra_arg[**P1](func: Callable[P1, int], extra: str, *args: P1.args, **kwargs: P1.kwargs) -> int:
return func(*args, **kwargs)
def foo2[**P2](func: Callable[P2, int], *args: P2.args, **kwargs: P2.kwargs) -> None:
foo1(func, *args, **kwargs)
# error: [invalid-argument-type] "Argument to function `foo1` is incorrect: Expected `P2@foo2.args`, found `Literal[1]`"
foo1(func, 1, *args, **kwargs)
# error: [invalid-argument-type] "Argument to function `foo1_with_extra_arg` is incorrect: Expected `str`, found `P2@foo2.args`"
foo1_with_extra_arg(func, *args, **kwargs)
foo1_with_extra_arg(func, "extra", *args, **kwargs)
Here, the first argument to f can specialize P to the parameters of the callable passed to it
which is then used to type the ParamSpec components used in *args and **kwargs.
def f1(x: int, y: str) -> int:
return 1
foo1(f1, 1, "a")
foo1(f1, x=1, y="a")
foo1(f1, 1, y="a")
# error: [missing-argument] "No arguments provided for required parameters `x`, `y` of function `foo1`"
foo1(f1)
# error: [missing-argument] "No argument provided for required parameter `y` of function `foo1`"
foo1(f1, 1)
# error: [invalid-argument-type] "Argument to function `foo1` is incorrect: Expected `str`, found `Literal[2]`"
foo1(f1, 1, 2)
# error: [too-many-positional-arguments] "Too many positional arguments to function `foo1`: expected 2, got 3"
foo1(f1, 1, "a", "b")
# error: [missing-argument] "No argument provided for required parameter `y` of function `foo1`"
# error: [unknown-argument] "Argument `z` does not match any known parameter of function `foo1`"
foo1(f1, x=1, z="a")
Specializing ParamSpec with another ParamSpec
class Foo[**P]:
def __init__(self, *args: P.args, **kwargs: P.kwargs) -> None:
self.args = args
self.kwargs = kwargs
def bar[**P](foo: Foo[P]) -> None:
reveal_type(foo) # revealed: Foo[P@bar]
reveal_type(foo.args) # revealed: Unknown | P@bar.args
reveal_type(foo.kwargs) # revealed: Unknown | P@bar.kwargs
ty will check whether the argument after ** is a mapping type but as instance attribute are
unioned with Unknown, it shouldn't error here.
from typing import Callable
def baz[**P](fn: Callable[P, None], foo: Foo[P]) -> None:
fn(*foo.args, **foo.kwargs)
The Unknown can be eliminated by using annotating these attributes with Final:
from typing import Final
class FooWithFinal[**P]:
def __init__(self, *args: P.args, **kwargs: P.kwargs) -> None:
self.args: Final = args
self.kwargs: Final = kwargs
def with_final[**P](foo: FooWithFinal[P]) -> None:
reveal_type(foo) # revealed: FooWithFinal[P@with_final]
reveal_type(foo.args) # revealed: P@with_final.args
reveal_type(foo.kwargs) # revealed: P@with_final.kwargs
Specializing Self when ParamSpec is involved
class Foo[**P]:
def method(self, *args: P.args, **kwargs: P.kwargs) -> str:
return "hello"
foo = Foo[int, str]()
reveal_type(foo) # revealed: Foo[(int, str, /)]
reveal_type(foo.method) # revealed: bound method Foo[(int, str, /)].method(int, str, /) -> str
reveal_type(foo.method(1, "a")) # revealed: str
Gradual types propagate through ParamSpec inference
from typing import Callable
def callable_identity[**P, R](func: Callable[P, R]) -> Callable[P, R]:
return func
@callable_identity
def f(env: dict) -> None:
pass
# revealed: (env: dict[Unknown, Unknown]) -> None
reveal_type(f)
Overloads
overloaded.pyi:
from typing import overload
@overload
def int_int(x: int) -> int: ...
@overload
def int_int(x: str) -> int: ...
@overload
def int_str(x: int) -> int: ...
@overload
def int_str(x: str) -> str: ...
@overload
def str_str(x: int) -> str: ...
@overload
def str_str(x: str) -> str: ...
from typing import Callable
from overloaded import int_int, int_str, str_str
def change_return_type[**P](f: Callable[P, int]) -> Callable[P, str]:
def nested(*args: P.args, **kwargs: P.kwargs) -> str:
return str(f(*args, **kwargs))
return nested
def with_parameters[**P](f: Callable[P, int], *args: P.args, **kwargs: P.kwargs) -> Callable[P, str]:
def nested(*args: P.args, **kwargs: P.kwargs) -> str:
return str(f(*args, **kwargs))
return nested
reveal_type(change_return_type(int_int)) # revealed: Overload[(x: int) -> str, (x: str) -> str]
# TODO: This shouldn't error and should pick the first overload because of the return type
# error: [invalid-argument-type]
reveal_type(change_return_type(int_str)) # revealed: Overload[(x: int) -> str, (x: str) -> str]
# error: [invalid-argument-type]
reveal_type(change_return_type(str_str)) # revealed: (...) -> str
# TODO: Both of these shouldn't raise an error
# error: [invalid-argument-type]
reveal_type(with_parameters(int_int, 1)) # revealed: Overload[(x: int) -> str, (x: str) -> str]
# error: [invalid-argument-type]
reveal_type(with_parameters(int_int, "a")) # revealed: Overload[(x: int) -> str, (x: str) -> str]
ParamSpec attribute assignability
When comparing signatures with ParamSpec attributes (P.args and P.kwargs), two different
inferable ParamSpec attributes with the same kind are assignable to each other. This enables
method overrides where both methods have their own ParamSpec.
Same attribute kind, both inferable
from typing import Callable
class Parent:
def method[**P](self, callback: Callable[P, None]) -> Callable[P, None]:
return callback
class Child1(Parent):
# This is a valid override: Q.args matches P.args, Q.kwargs matches P.kwargs
def method[**Q](self, callback: Callable[Q, None]) -> Callable[Q, None]:
return callback
# Both signatures use ParamSpec, so they should be compatible
def outer[**P](f: Callable[P, int]) -> Callable[P, int]:
def inner[**Q](g: Callable[Q, int]) -> Callable[Q, int]:
return g
return inner(f)
We can explicitly mark it as an override using the @override decorator.
from typing import override
class Child2(Parent):
@override
def method[**Q](self, callback: Callable[Q, None]) -> Callable[Q, None]:
return callback
One ParamSpec not inferable
Here, P is in a non-inferable position while Q is inferable. So, they are not considered
assignable.
from typing import Callable
class Container[**P]:
def method(self, f: Callable[P, None]) -> Callable[P, None]:
return f
def try_assign[**Q](self, f: Callable[Q, None]) -> Callable[Q, None]:
# error: [invalid-return-type] "Return type does not match returned value: expected `(**Q@try_assign) -> None`, found `(**P@Container) -> None`"
# error: [invalid-argument-type] "Argument to bound method `method` is incorrect: Expected `(**P@Container) -> None`, found `(**Q@try_assign) -> None`"
return self.method(f)