Merge tag 'linux-can-next-for-5.19-20220419' of git://git.kernel.org/pub/scm/linux/kernel/git/mkl/linux-can-next

Marc Kleine-Budde says:

====================
pull-request: can-next 2022-04-19

this is a pull request of 17 patches for net-next/master.

The first 2 patches are by me and target the CAN driver
infrastructure. One patch renames a function in the rx_offload helper
the other one updates the CAN bitrate calculation to prefer small bit
rate pre-scalers over larger ones, which is encouraged by the CAN in
Automation.

Kris Bahnsen contributes a patch to fix the links to Technologic
Systems web resources in the sja1000 driver.

Christophe Leroy's patch prepares the mpc5xxx_can driver for upcoming
powerpc header cleanup.

Minghao Chi's patch converts the flexcan driver to use
pm_runtime_resume_and_get().

The next 2 patches target the Xilinx CAN driver. Lukas Bulwahn's patch
fixes an entry in the MAINTAINERS file. A patch by me marks the bit
timing constants as const.

Wolfram Sang's patch documents r8a77961 support on the
renesas,rcar-canfd bindings document.

The next 2 patches are by me and add support for the mcp251863 chip to
the mcp251xfd driver.

The last 7 patches are by Pavel Pisa, Martin Jerabek et al. and add
the ctucanfd driver for the CTU CAN FD IP Core.
====================

Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
David S. Miller
2022-04-20 11:14:36 +01:00
30 changed files with 3382 additions and 47 deletions

View File

@@ -0,0 +1,63 @@
# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/net/can/ctu,ctucanfd.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: CTU CAN FD Open-source IP Core Device Tree Bindings
description: |
Open-source CAN FD IP core developed at the Czech Technical University in Prague
The core sources and documentation on project page
[1] sources : https://gitlab.fel.cvut.cz/canbus/ctucanfd_ip_core
[2] datasheet : https://canbus.pages.fel.cvut.cz/ctucanfd_ip_core/doc/Datasheet.pdf
Integration in Xilinx Zynq SoC based system together with
OpenCores SJA1000 compatible controllers
[3] project : https://gitlab.fel.cvut.cz/canbus/zynq/zynq-can-sja1000-top
Martin Jerabek dimploma thesis with integration and testing
framework description
[4] PDF : https://dspace.cvut.cz/bitstream/handle/10467/80366/F3-DP-2019-Jerabek-Martin-Jerabek-thesis-2019-canfd.pdf
maintainers:
- Pavel Pisa <pisa@cmp.felk.cvut.cz>
- Ondrej Ille <ondrej.ille@gmail.com>
- Martin Jerabek <martin.jerabek01@gmail.com>
properties:
compatible:
oneOf:
- items:
- const: ctu,ctucanfd-2
- const: ctu,ctucanfd
- const: ctu,ctucanfd
reg:
maxItems: 1
interrupts:
maxItems: 1
clocks:
description: |
phandle of reference clock (100 MHz is appropriate
for FPGA implementation on Zynq-7000 system).
maxItems: 1
required:
- compatible
- reg
- interrupts
- clocks
additionalProperties: false
examples:
- |
ctu_can_fd_0: can@43c30000 {
compatible = "ctu,ctucanfd";
interrupts = <0 30 4>;
clocks = <&clkc 15>;
reg = <0x43c30000 0x10000>;
};

View File

@@ -5,8 +5,8 @@ $id: http://devicetree.org/schemas/net/can/microchip,mcp251xfd.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title:
Microchip MCP2517FD and MCP2518FD stand-alone CAN controller device tree
bindings
Microchip MCP2517FD, MCP2518FD and MCP251863 stand-alone CAN
controller device tree bindings
maintainers:
- Marc Kleine-Budde <mkl@pengutronix.de>
@@ -17,13 +17,14 @@ allOf:
properties:
compatible:
oneOf:
- const: microchip,mcp2517fd
description: for MCP2517FD
- const: microchip,mcp2518fd
description: for MCP2518FD
- const: microchip,mcp251xfd
description: to autodetect chip variant
- enum:
- microchip,mcp2517fd
- microchip,mcp2518fd
- microchip,mcp251xfd
- items:
- enum:
- microchip,mcp251863
- const: microchip,mcp2518fd
reg:
maxItems: 1

View File

@@ -23,6 +23,7 @@ properties:
- renesas,r8a774e1-canfd # RZ/G2H
- renesas,r8a7795-canfd # R-Car H3
- renesas,r8a7796-canfd # R-Car M3-W
- renesas,r8a77961-canfd # R-Car M3-W+
- renesas,r8a77965-canfd # R-Car M3-N
- renesas,r8a77970-canfd # R-Car V3M
- renesas,r8a77980-canfd # R-Car V3H

View File

@@ -283,6 +283,8 @@ patternProperties:
description: Shenzen Chuangsiqi Technology Co.,Ltd.
"^ctera,.*":
description: CTERA Networks Intl.
"^ctu,.*":
description: Czech Technical University in Prague
"^cubietech,.*":
description: Cubietech, Ltd.
"^cui,.*":

View File

@@ -0,0 +1,639 @@
.. SPDX-License-Identifier: GPL-2.0-or-later
CTU CAN FD Driver
=================
Author: Martin Jerabek <martin.jerabek01@gmail.com>
About CTU CAN FD IP Core
------------------------
`CTU CAN FD <https://gitlab.fel.cvut.cz/canbus/ctucanfd_ip_core>`_
is an open source soft core written in VHDL.
It originated in 2015 as Ondrej Ille's project
at the `Department of Measurement <https://meas.fel.cvut.cz/>`_
of `FEE <http://www.fel.cvut.cz/en/>`_ at `CTU <https://www.cvut.cz/en>`_.
The SocketCAN driver for Xilinx Zynq SoC based MicroZed board
`Vivado integration <https://gitlab.fel.cvut.cz/canbus/zynq/zynq-can-sja1000-top>`_
and Intel Cyclone V 5CSEMA4U23C6 based DE0-Nano-SoC Terasic board
`QSys integration <https://gitlab.fel.cvut.cz/canbus/intel-soc-ctucanfd>`_
has been developed as well as support for
`PCIe integration <https://gitlab.fel.cvut.cz/canbus/pcie-ctucanfd>`_ of the core.
In the case of Zynq, the core is connected via the APB system bus, which does
not have enumeration support, and the device must be specified in Device Tree.
This kind of devices is called platform device in the kernel and is
handled by a platform device driver.
The basic functional model of the CTU CAN FD peripheral has been
accepted into QEMU mainline. See QEMU `CAN emulation support <https://www.qemu.org/docs/master/system/devices/can.html>`_
for CAN FD buses, host connection and CTU CAN FD core emulation. The development
version of emulation support can be cloned from ctu-canfd branch of QEMU local
development `repository <https://gitlab.fel.cvut.cz/canbus/qemu-canbus>`_.
About SocketCAN
---------------
SocketCAN is a standard common interface for CAN devices in the Linux
kernel. As the name suggests, the bus is accessed via sockets, similarly
to common network devices. The reasoning behind this is in depth
described in `Linux SocketCAN <https://www.kernel.org/doc/html/latest/networking/can.html>`_.
In short, it offers a
natural way to implement and work with higher layer protocols over CAN,
in the same way as, e.g., UDP/IP over Ethernet.
Device probe
~~~~~~~~~~~~
Before going into detail about the structure of a CAN bus device driver,
let's reiterate how the kernel gets to know about the device at all.
Some buses, like PCI or PCIe, support device enumeration. That is, when
the system boots, it discovers all the devices on the bus and reads
their configuration. The kernel identifies the device via its vendor ID
and device ID, and if there is a driver registered for this identifier
combination, its probe method is invoked to populate the driver's
instance for the given hardware. A similar situation goes with USB, only
it allows for device hot-plug.
The situation is different for peripherals which are directly embedded
in the SoC and connected to an internal system bus (AXI, APB, Avalon,
and others). These buses do not support enumeration, and thus the kernel
has to learn about the devices from elsewhere. This is exactly what the
Device Tree was made for.
Device tree
~~~~~~~~~~~
An entry in device tree states that a device exists in the system, how
it is reachable (on which bus it resides) and its configuration
registers address, interrupts and so on. An example of such a device
tree is given in .
.. code:: raw
/ {
/* ... */
amba: amba {
#address-cells = <1>;
#size-cells = <1>;
compatible = "simple-bus";
CTU_CAN_FD_0: CTU_CAN_FD@43c30000 {
compatible = "ctu,ctucanfd";
interrupt-parent = <&intc>;
interrupts = <0 30 4>;
clocks = <&clkc 15>;
reg = <0x43c30000 0x10000>;
};
};
};
.. _sec:socketcan:drv:
Driver structure
~~~~~~~~~~~~~~~~
The driver can be divided into two parts platform-dependent device
discovery and set up, and platform-independent CAN network device
implementation.
.. _sec:socketcan:platdev:
Platform device driver
^^^^^^^^^^^^^^^^^^^^^^
In the case of Zynq, the core is connected via the AXI system bus, which
does not have enumeration support, and the device must be specified in
Device Tree. This kind of devices is called *platform device* in the
kernel and is handled by a *platform device driver*\ [1]_.
A platform device driver provides the following things:
- A *probe* function
- A *remove* function
- A table of *compatible* devices that the driver can handle
The *probe* function is called exactly once when the device appears (or
the driver is loaded, whichever happens later). If there are more
devices handled by the same driver, the *probe* function is called for
each one of them. Its role is to allocate and initialize resources
required for handling the device, as well as set up low-level functions
for the platform-independent layer, e.g., *read_reg* and *write_reg*.
After that, the driver registers the device to a higher layer, in our
case as a *network device*.
The *remove* function is called when the device disappears, or the
driver is about to be unloaded. It serves to free the resources
allocated in *probe* and to unregister the device from higher layers.
Finally, the table of *compatible* devices states which devices the
driver can handle. The Device Tree entry ``compatible`` is matched
against the tables of all *platform drivers*.
.. code:: c
/* Match table for OF platform binding */
static const struct of_device_id ctucan_of_match[] = {
{ .compatible = "ctu,canfd-2", },
{ .compatible = "ctu,ctucanfd", },
{ /* end of list */ },
};
MODULE_DEVICE_TABLE(of, ctucan_of_match);
static int ctucan_probe(struct platform_device *pdev);
static int ctucan_remove(struct platform_device *pdev);
static struct platform_driver ctucanfd_driver = {
.probe = ctucan_probe,
.remove = ctucan_remove,
.driver = {
.name = DRIVER_NAME,
.of_match_table = ctucan_of_match,
},
};
module_platform_driver(ctucanfd_driver);
.. _sec:socketcan:netdev:
Network device driver
^^^^^^^^^^^^^^^^^^^^^
Each network device must support at least these operations:
- Bring the device up: ``ndo_open``
- Bring the device down: ``ndo_close``
- Submit TX frames to the device: ``ndo_start_xmit``
- Signal TX completion and errors to the network subsystem: ISR
- Submit RX frames to the network subsystem: ISR and NAPI
There are two possible event sources: the device and the network
subsystem. Device events are usually signaled via an interrupt, handled
in an Interrupt Service Routine (ISR). Handlers for the events
originating in the network subsystem are then specified in
``struct net_device_ops``.
When the device is brought up, e.g., by calling ``ip link set can0 up``,
the drivers function ``ndo_open`` is called. It should validate the
interface configuration and configure and enable the device. The
analogous opposite is ``ndo_close``, called when the device is being
brought down, be it explicitly or implicitly.
When the system should transmit a frame, it does so by calling
``ndo_start_xmit``, which enqueues the frame into the device. If the
device HW queue (FIFO, mailboxes or whatever the implementation is)
becomes full, the ``ndo_start_xmit`` implementation informs the network
subsystem that it should stop the TX queue (via ``netif_stop_queue``).
It is then re-enabled later in ISR when the device has some space
available again and is able to enqueue another frame.
All the device events are handled in ISR, namely:
#. **TX completion**. When the device successfully finishes transmitting
a frame, the frame is echoed locally. On error, an informative error
frame [2]_ is sent to the network subsystem instead. In both cases,
the software TX queue is resumed so that more frames may be sent.
#. **Error condition**. If something goes wrong (e.g., the device goes
bus-off or RX overrun happens), error counters are updated, and
informative error frames are enqueued to SW RX queue.
#. **RX buffer not empty**. In this case, read the RX frames and enqueue
them to SW RX queue. Usually NAPI is used as a middle layer (see ).
.. _sec:socketcan:napi:
NAPI
~~~~
The frequency of incoming frames can be high and the overhead to invoke
the interrupt service routine for each frame can cause significant
system load. There are multiple mechanisms in the Linux kernel to deal
with this situation. They evolved over the years of Linux kernel
development and enhancements. For network devices, the current standard
is NAPI *the New API*. It is similar to classical top-half/bottom-half
interrupt handling in that it only acknowledges the interrupt in the ISR
and signals that the rest of the processing should be done in softirq
context. On top of that, it offers the possibility to *poll* for new
frames for a while. This has a potential to avoid the costly round of
enabling interrupts, handling an incoming IRQ in ISR, re-enabling the
softirq and switching context back to softirq.
More detailed documentation of NAPI may be found on the pages of Linux
Foundation `<https://wiki.linuxfoundation.org/networking/napi>`_.
Integrating the core to Xilinx Zynq
-----------------------------------
The core interfaces a simple subset of the Avalon
(search for Intel **Avalon Interface Specifications**)
bus as it was originally used on
Alterra FPGA chips, yet Xilinx natively interfaces with AXI
(search for ARM **AMBA AXI and ACE Protocol Specification AXI3,
AXI4, and AXI4-Lite, ACE and ACE-Lite**).
The most obvious solution would be to use
an Avalon/AXI bridge or implement some simple conversion entity.
However, the cores interface is half-duplex with no handshake
signaling, whereas AXI is full duplex with two-way signaling. Moreover,
even AXI-Lite slave interface is quite resource-intensive, and the
flexibility and speed of AXI are not required for a CAN core.
Thus a much simpler bus was chosen APB (Advanced Peripheral Bus)
(search for ARM **AMBA APB Protocol Specification**).
APB-AXI bridge is directly available in
Xilinx Vivado, and the interface adaptor entity is just a few simple
combinatorial assignments.
Finally, to be able to include the core in a block diagram as a custom
IP, the core, together with the APB interface, has been packaged as a
Vivado component.
CTU CAN FD Driver design
------------------------
The general structure of a CAN device driver has already been examined
in . The next paragraphs provide a more detailed description of the CTU
CAN FD core driver in particular.
Low-level driver
~~~~~~~~~~~~~~~~
The core is not intended to be used solely with SocketCAN, and thus it
is desirable to have an OS-independent low-level driver. This low-level
driver can then be used in implementations of OS driver or directly
either on bare metal or in a user-space application. Another advantage
is that if the hardware slightly changes, only the low-level driver
needs to be modified.
The code [3]_ is in part automatically generated and in part written
manually by the core author, with contributions of the thesis author.
The low-level driver supports operations such as: set bit timing, set
controller mode, enable/disable, read RX frame, write TX frame, and so
on.
Configuring bit timing
~~~~~~~~~~~~~~~~~~~~~~
On CAN, each bit is divided into four segments: SYNC, PROP, PHASE1, and
PHASE2. Their duration is expressed in multiples of a Time Quantum
(details in `CAN Specification, Version 2.0 <http://esd.cs.ucr.edu/webres/can20.pdf>`_, chapter 8).
When configuring
bitrate, the durations of all the segments (and time quantum) must be
computed from the bitrate and Sample Point. This is performed
independently for both the Nominal bitrate and Data bitrate for CAN FD.
SocketCAN is fairly flexible and offers either highly customized
configuration by setting all the segment durations manually, or a
convenient configuration by setting just the bitrate and sample point
(and even that is chosen automatically per Bosch recommendation if not
specified). However, each CAN controller may have different base clock
frequency and different width of segment duration registers. The
algorithm thus needs the minimum and maximum values for the durations
(and clock prescaler) and tries to optimize the numbers to fit both the
constraints and the requested parameters.
.. code:: c
struct can_bittiming_const {
char name[16]; /* Name of the CAN controller hardware */
__u32 tseg1_min; /* Time segment 1 = prop_seg + phase_seg1 */
__u32 tseg1_max;
__u32 tseg2_min; /* Time segment 2 = phase_seg2 */
__u32 tseg2_max;
__u32 sjw_max; /* Synchronisation jump width */
__u32 brp_min; /* Bit-rate prescaler */
__u32 brp_max;
__u32 brp_inc;
};
[lst:can_bittiming_const]
A curious reader will notice that the durations of the segments PROP_SEG
and PHASE_SEG1 are not determined separately but rather combined and
then, by default, the resulting TSEG1 is evenly divided between PROP_SEG
and PHASE_SEG1. In practice, this has virtually no consequences as the
sample point is between PHASE_SEG1 and PHASE_SEG2. In CTU CAN FD,
however, the duration registers ``PROP`` and ``PH1`` have different
widths (6 and 7 bits, respectively), so the auto-computed values might
overflow the shorter register and must thus be redistributed among the
two [4]_.
Handling RX
~~~~~~~~~~~
Frame reception is handled in NAPI queue, which is enabled from ISR when
the RXNE (RX FIFO Not Empty) bit is set. Frames are read one by one
until either no frame is left in the RX FIFO or the maximum work quota
has been reached for the NAPI poll run (see ). Each frame is then passed
to the network interface RX queue.
An incoming frame may be either a CAN 2.0 frame or a CAN FD frame. The
way to distinguish between these two in the kernel is to allocate either
``struct can_frame`` or ``struct canfd_frame``, the two having different
sizes. In the controller, the information about the frame type is stored
in the first word of RX FIFO.
This brings us a chicken-egg problem: we want to allocate the ``skb``
for the frame, and only if it succeeds, fetch the frame from FIFO;
otherwise keep it there for later. But to be able to allocate the
correct ``skb``, we have to fetch the first work of FIFO. There are
several possible solutions:
#. Read the word, then allocate. If it fails, discard the rest of the
frame. When the system is low on memory, the situation is bad anyway.
#. Always allocate ``skb`` big enough for an FD frame beforehand. Then
tweak the ``skb`` internals to look like it has been allocated for
the smaller CAN 2.0 frame.
#. Add option to peek into the FIFO instead of consuming the word.
#. If the allocation fails, store the read word into drivers data. On
the next try, use the stored word instead of reading it again.
Option 1 is simple enough, but not very satisfying if we could do
better. Option 2 is not acceptable, as it would require modifying the
private state of an integral kernel structure. The slightly higher
memory consumption is just a virtual cherry on top of the “cake”. Option
3 requires non-trivial HW changes and is not ideal from the HW point of
view.
Option 4 seems like a good compromise, with its disadvantage being that
a partial frame may stay in the FIFO for a prolonged time. Nonetheless,
there may be just one owner of the RX FIFO, and thus no one else should
see the partial frame (disregarding some exotic debugging scenarios).
Basides, the driver resets the core on its initialization, so the
partial frame cannot be “adopted” either. In the end, option 4 was
selected [5]_.
.. _subsec:ctucanfd:rxtimestamp:
Timestamping RX frames
^^^^^^^^^^^^^^^^^^^^^^
The CTU CAN FD core reports the exact timestamp when the frame has been
received. The timestamp is by default captured at the sample point of
the last bit of EOF but is configurable to be captured at the SOF bit.
The timestamp source is external to the core and may be up to 64 bits
wide. At the time of writing, passing the timestamp from kernel to
userspace is not yet implemented, but is planned in the future.
Handling TX
~~~~~~~~~~~
The CTU CAN FD core has 4 independent TX buffers, each with its own
state and priority. When the core wants to transmit, a TX buffer in
Ready state with the highest priority is selected.
The priorities are 3bit numbers in register TX_PRIORITY
(nibble-aligned). This should be flexible enough for most use cases.
SocketCAN, however, supports only one FIFO queue for outgoing
frames [6]_. The buffer priorities may be used to simulate the FIFO
behavior by assigning each buffer a distinct priority and *rotating* the
priorities after a frame transmission is completed.
In addition to priority rotation, the SW must maintain head and tail
pointers into the FIFO formed by the TX buffers to be able to determine
which buffer should be used for next frame (``txb_head``) and which
should be the first completed one (``txb_tail``). The actual buffer
indices are (obviously) modulo 4 (number of TX buffers), but the
pointers must be at least one bit wider to be able to distinguish
between FIFO full and FIFO empty in this situation,
:math:`txb\_head \equiv txb\_tail\ (\textrm{mod}\ 4)`. An example of how
the FIFO is maintained, together with priority rotation, is depicted in
|
+------+---+---+---+---+
| TXB# | 0 | 1 | 2 | 3 |
+======+===+===+===+===+
| Seq | A | B | C | |
+------+---+---+---+---+
| Prio | 7 | 6 | 5 | 4 |
+------+---+---+---+---+
| | | T | | H |
+------+---+---+---+---+
|
+------+---+---+---+---+
| TXB# | 0 | 1 | 2 | 3 |
+======+===+===+===+===+
| Seq | | B | C | |
+------+---+---+---+---+
| Prio | 4 | 7 | 6 | 5 |
+------+---+---+---+---+
| | | T | | H |
+------+---+---+---+---+
|
+------+---+---+---+---+----+
| TXB# | 0 | 1 | 2 | 3 | 0 |
+======+===+===+===+===+====+
| Seq | E | B | C | D | |
+------+---+---+---+---+----+
| Prio | 4 | 7 | 6 | 5 | |
+------+---+---+---+---+----+
| | | T | | | H |
+------+---+---+---+---+----+
|
.. figure:: fsm_txt_buffer_user.svg
TX Buffer states with possible transitions
.. _subsec:ctucanfd:txtimestamp:
Timestamping TX frames
^^^^^^^^^^^^^^^^^^^^^^
When submitting a frame to a TX buffer, one may specify the timestamp at
which the frame should be transmitted. The frame transmission may start
later, but not sooner. Note that the timestamp does not participate in
buffer prioritization that is decided solely by the mechanism
described above.
Support for time-based packet transmission was recently merged to Linux
v4.19 `Time-based packet transmission <https://lwn.net/Articles/748879/>`_,
but it remains yet to be researched
whether this functionality will be practical for CAN.
Also similarly to retrieving the timestamp of RX frames, the core
supports retrieving the timestamp of TX frames that is the time when
the frame was successfully delivered. The particulars are very similar
to timestamping RX frames and are described in .
Handling RX buffer overrun
~~~~~~~~~~~~~~~~~~~~~~~~~~
When a received frame does no more fit into the hardware RX FIFO in its
entirety, RX FIFO overrun flag (STATUS[DOR]) is set and Data Overrun
Interrupt (DOI) is triggered. When servicing the interrupt, care must be
taken first to clear the DOR flag (via COMMAND[CDO]) and after that
clear the DOI interrupt flag. Otherwise, the interrupt would be
immediately [7]_ rearmed.
**Note**: During development, it was discussed whether the internal HW
pipelining cannot disrupt this clear sequence and whether an additional
dummy cycle is necessary between clearing the flag and the interrupt. On
the Avalon interface, it indeed proved to be the case, but APB being
safe because it uses 2-cycle transactions. Essentially, the DOR flag
would be cleared, but DOI registers Preset input would still be high
the cycle when the DOI clear request would also be applied (by setting
the registers Reset input high). As Set had higher priority than Reset,
the DOI flag would not be reset. This has been already fixed by swapping
the Set/Reset priority (see issue #187).
Reporting Error Passive and Bus Off conditions
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It may be desirable to report when the node reaches *Error Passive*,
*Error Warning*, and *Bus Off* conditions. The driver is notified about
error state change by an interrupt (EPI, EWLI), and then proceeds to
determine the cores error state by reading its error counters.
There is, however, a slight race condition here there is a delay
between the time when the state transition occurs (and the interrupt is
triggered) and when the error counters are read. When EPI is received,
the node may be either *Error Passive* or *Bus Off*. If the node goes
*Bus Off*, it obviously remains in the state until it is reset.
Otherwise, the node is *or was* *Error Passive*. However, it may happen
that the read state is *Error Warning* or even *Error Active*. It may be
unclear whether and what exactly to report in that case, but I
personally entertain the idea that the past error condition should still
be reported. Similarly, when EWLI is received but the state is later
detected to be *Error Passive*, *Error Passive* should be reported.
CTU CAN FD Driver Sources Reference
-----------------------------------
.. kernel-doc:: drivers/net/can/ctucanfd/ctucanfd.h
:internal:
.. kernel-doc:: drivers/net/can/ctucanfd/ctucanfd_base.c
:internal:
.. kernel-doc:: drivers/net/can/ctucanfd/ctucanfd_pci.c
:internal:
.. kernel-doc:: drivers/net/can/ctucanfd/ctucanfd_platform.c
:internal:
CTU CAN FD IP Core and Driver Development Acknowledgment
---------------------------------------------------------
* Odrej Ille <illeondr@fel.cvut.cz>
* started the project as student at Department of Measurement, FEE, CTU
* invested great amount of personal time and enthusiasm to the project over years
* worked on more funded tasks
* `Department of Measurement <https://meas.fel.cvut.cz/>`_,
`Faculty of Electrical Engineering <http://www.fel.cvut.cz/en/>`_,
`Czech Technical University <https://www.cvut.cz/en>`_
* is the main investor into the project over many years
* uses project in their CAN/CAN FD diagnostics framework for `Skoda Auto <https://www.skoda-auto.cz/>`_
* `Digiteq Automotive <https://www.digiteqautomotive.com/en>`_
* funding of the project CAN FD Open Cores Support Linux Kernel Based Systems
* negotiated and paid CTU to allow public access to the project
* provided additional funding of the work
* `Department of Control Engineering <https://control.fel.cvut.cz/en>`_,
`Faculty of Electrical Engineering <http://www.fel.cvut.cz/en/>`_,
`Czech Technical University <https://www.cvut.cz/en>`_
* solving the project CAN FD Open Cores Support Linux Kernel Based Systems
* providing GitLab management
* virtual servers and computational power for continuous integration
* providing hardware for HIL continuous integration tests
* `PiKRON Ltd. <http://pikron.com/>`_
* minor funding to initiate preparation of the project open-sourcing
* Petr Porazil <porazil@pikron.com>
* design of PCIe transceiver addon board and assembly of boards
* design and assembly of MZ_APO baseboard for MicroZed/Zynq based system
* Martin Jerabek <martin.jerabek01@gmail.com>
* Linux driver development
* continuous integration platform architect and GHDL updates
* theses `Open-source and Open-hardware CAN FD Protocol Support <https://dspace.cvut.cz/bitstream/handle/10467/80366/F3-DP-2019-Jerabek-Martin-Jerabek-thesis-2019-canfd.pdf>`_
* Jiri Novak <jnovak@fel.cvut.cz>
* project initiation, management and use at Department of Measurement, FEE, CTU
* Pavel Pisa <pisa@cmp.felk.cvut.cz>
* initiate open-sourcing, project coordination, management at Department of Control Engineering, FEE, CTU
* Jaroslav Beran<jara.beran@gmail.com>
* system integration for Intel SoC, core and driver testing and updates
* Carsten Emde (`OSADL <https://www.osadl.org/>`_)
* provided OSADL expertise to discuss IP core licensing
* pointed to possible deadlock for LGPL and CAN bus possible patent case which lead to relicense IP core design to BSD like license
* Reiner Zitzmann and Holger Zeltwanger (`CAN in Automation <https://www.can-cia.org/>`_)
* provided suggestions and help to inform community about the project and invited us to events focused on CAN bus future development directions
* Jan Charvat
* implemented CTU CAN FD functional model for QEMU which has been integrated into QEMU mainline (`docs/system/devices/can.rst <https://www.qemu.org/docs/master/system/devices/can.html>`_)
* Bachelor theses Model of CAN FD Communication Controller for QEMU Emulator
Notes
-----
.. [1]
Other buses have their own specific driver interface to set up the
device.
.. [2]
Not to be mistaken with CAN Error Frame. This is a ``can_frame`` with
``CAN_ERR_FLAG`` set and some error info in its ``data`` field.
.. [3]
Available in CTU CAN FD repository
`<https://gitlab.fel.cvut.cz/canbus/ctucanfd_ip_core>`_
.. [4]
As is done in the low-level driver functions
``ctucan_hw_set_nom_bittiming`` and
``ctucan_hw_set_data_bittiming``.
.. [5]
At the time of writing this thesis, option 1 is still being used and
the modification is queued in gitlab issue #222
.. [6]
Strictly speaking, multiple CAN TX queues are supported since v4.19
`can: enable multi-queue for SocketCAN devices <https://lore.kernel.org/patchwork/patch/913526/>`_ but no mainline driver is using
them yet.
.. [7]
Or rather in the next clock cycle

View File

@@ -0,0 +1,151 @@
<?xml version="1.0" encoding="UTF-8"?>
<svg width="113.611mm" height="86.6873mm" version="1.1" viewBox="0 0 113.611 86.6873" xmlns="http://www.w3.org/2000/svg" xmlns:cc="http://creativecommons.org/ns#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<defs>
<marker id="marker3667" overflow="visible" orient="auto">
<path transform="scale(-.6)" d="m8.71859 4.03374-10.9259-4.01772 10.9259-4.01772c-1.7455 2.37206-1.73544 5.61745-6e-7 8.03544z" fill="#28a4ff" fill-rule="evenodd" stroke="#28a4ff" stroke-linejoin="round" stroke-width=".625"/>
</marker>
<marker id="marker3517" overflow="visible" orient="auto">
<path transform="scale(-.6)" d="m8.71859 4.03374-10.9259-4.01772 10.9259-4.01772c-1.7455 2.37206-1.73544 5.61745-6e-7 8.03544z" fill-rule="evenodd" stroke="#000" stroke-linejoin="round" stroke-width=".625"/>
</marker>
<marker id="marker3373" overflow="visible" orient="auto">
<path transform="scale(-.6)" d="m8.71859 4.03374-10.9259-4.01772 10.9259-4.01772c-1.7455 2.37206-1.73544 5.61745-6e-7 8.03544z" fill-rule="evenodd" stroke="#000" stroke-linejoin="round" stroke-width=".625"/>
</marker>
<marker id="marker3199" overflow="visible" orient="auto">
<path transform="scale(-.6)" d="m8.71859 4.03374-10.9259-4.01772 10.9259-4.01772c-1.7455 2.37206-1.73544 5.61745-6e-7 8.03544z" fill="#28a4ff" fill-rule="evenodd" stroke="#28a4ff" stroke-linejoin="round" stroke-width=".625"/>
</marker>
<marker id="marker3037" overflow="visible" orient="auto">
<path transform="scale(-.6)" d="m8.71859 4.03374-10.9259-4.01772 10.9259-4.01772c-1.7455 2.37206-1.73544 5.61745-6e-7 8.03544z" fill="#28a4ff" fill-rule="evenodd" stroke="#28a4ff" stroke-linejoin="round" stroke-width=".625"/>
</marker>
<marker id="marker2779" overflow="visible" orient="auto">
<path transform="scale(-.6)" d="m8.71859 4.03374-10.9259-4.01772 10.9259-4.01772c-1.7455 2.37206-1.73544 5.61745-6e-7 8.03544z" fill="#28a4ff" fill-rule="evenodd" stroke="#28a4ff" stroke-linejoin="round" stroke-width=".625"/>
</marker>
<marker id="marker2477" overflow="visible" orient="auto">
<path transform="scale(.6) rotate(180) translate(0)" d="m8.71859 4.03374-10.9259-4.01772 10.9259-4.01772c-1.7455 2.37206-1.73544 5.61745-6e-7 8.03544z" fill="#28a4ff" fill-rule="evenodd" stroke="#28a4ff" stroke-linejoin="round" stroke-width=".625"/>
</marker>
<marker id="marker2074" overflow="visible" orient="auto">
<path transform="scale(.6) rotate(180) translate(0)" d="m8.71859 4.03374-10.9259-4.01772 10.9259-4.01772c-1.7455 2.37206-1.73544 5.61745-6e-7 8.03544z" fill-rule="evenodd" stroke="#000" stroke-linejoin="round" stroke-width=".625"/>
</marker>
<marker id="marker1964" overflow="visible" orient="auto">
<path transform="scale(.6) rotate(180) translate(0)" d="m8.71859 4.03374-10.9259-4.01772 10.9259-4.01772c-1.7455 2.37206-1.73544 5.61745-6e-7 8.03544z" fill-rule="evenodd" stroke="#000" stroke-linejoin="round" stroke-width=".625"/>
</marker>
<marker id="marker1856" overflow="visible" orient="auto">
<path transform="scale(.6) rotate(180) translate(0)" d="m8.71859 4.03374-10.9259-4.01772 10.9259-4.01772c-1.7455 2.37206-1.73544 5.61745-6e-7 8.03544z" fill-rule="evenodd" stroke="#000" stroke-linejoin="round" stroke-width=".625"/>
</marker>
<marker id="Arrow2Mend" overflow="visible" orient="auto">
<path transform="scale(.6) rotate(180) translate(0)" d="m8.71859 4.03374-10.9259-4.01772 10.9259-4.01772c-1.7455 2.37206-1.73544 5.61745-6e-7 8.03544z" fill-rule="evenodd" stroke="#000" stroke-linejoin="round" stroke-width=".625"/>
</marker>
<filter id="filter1204" x="-4.19953e-6" y="-5.60084e-6" width="1.00001" height="1.00001" color-interpolation-filters="sRGB">
<feGaussianBlur stdDeviation="0.00018829868"/>
</filter>
<marker id="marker2074-3" overflow="visible" orient="auto">
<path transform="scale(-.6)" d="m8.71859 4.03374-10.9259-4.01772 10.9259-4.01772c-1.7455 2.37206-1.73544 5.61745-6e-7 8.03544z" fill="#28a4ff" fill-rule="evenodd" stroke="#28a4ff" stroke-linejoin="round" stroke-width=".625"/>
</marker>
<filter id="filter1204-6" x="-4.19953e-6" y="-5.60084e-6" width="1.00001" height="1.00001" color-interpolation-filters="sRGB">
<feGaussianBlur stdDeviation="0.00018829868"/>
</filter>
<filter id="filter1204-6-9" x="-4.19953e-6" y="-5.60084e-6" width="1.00001" height="1.00001" color-interpolation-filters="sRGB">
<feGaussianBlur stdDeviation="0.00018829868"/>
</filter>
<filter id="filter1204-6-2" x="-4.19953e-6" y="-5.60084e-6" width="1.00001" height="1.00001" color-interpolation-filters="sRGB">
<feGaussianBlur stdDeviation="0.00018829868"/>
</filter>
<filter id="filter1204-6-2-9" x="-4.19953e-6" y="-5.60084e-6" width="1.00001" height="1.00001" color-interpolation-filters="sRGB">
<feGaussianBlur stdDeviation="0.00018829868"/>
</filter>
<filter id="filter1204-6-2-9-4" x="-4.19953e-6" y="-5.60084e-6" width="1.00001" height="1.00001" color-interpolation-filters="sRGB">
<feGaussianBlur stdDeviation="0.00018829868"/>
</filter>
<filter id="filter1204-6-2-9-1" x="-4.19953e-6" y="-5.60084e-6" width="1.00001" height="1.00001" color-interpolation-filters="sRGB">
<feGaussianBlur stdDeviation="0.00018829868"/>
</filter>
<filter id="filter1204-6-2-9-1-3" x="-4.19953e-6" y="-5.60084e-6" width="1.00001" height="1.00001" color-interpolation-filters="sRGB">
<feGaussianBlur stdDeviation="0.00018829868"/>
</filter>
<filter id="filter1204-6-2-9-1-3-1" x="-4.19953e-6" y="-5.60084e-6" width="1.00001" height="1.00001" color-interpolation-filters="sRGB">
<feGaussianBlur stdDeviation="0.00018829868"/>
</filter>
</defs>
<metadata>
<rdf:RDF>
<cc:Work rdf:about="">
<dc:format>image/svg+xml</dc:format>
<dc:type rdf:resource="http://purl.org/dc/dcmitype/StillImage"/>
<dc:title/>
</cc:Work>
</rdf:RDF>
</metadata>
<g transform="translate(-49.0277 -104.823)">
<g>
<path d="m130.534 165.429h-71.1816v-17.5315" fill="none" marker-end="url(#marker2477)" stroke="#28a4ff" stroke-width=".6"/>
<path d="m145.034 122.959v-11.5914h-43.1215" fill="none" marker-end="url(#marker3037)" stroke="#28a4ff" stroke-width=".6"/>
<rect x="130.679" y="122.933" width="28.2965" height="45.2319" rx="0" ry="0" fill="#e5e5e5" stroke="#717171" stroke-linecap="square" stroke-width=".499999"/>
<path d="m102.044 116.236h23.3126l-0.13388 18.8185h19.9383v3.66603" fill="none" marker-end="url(#marker3199)" stroke="#28a4ff" stroke-width=".6"/>
<path d="m59.5006 138.391v-24.2517h20.6338" fill="none" marker-end="url(#marker2779)" stroke="#28a4ff" stroke-width=".6"/>
<rect x="78.1389" y="126.411" width="28.0037" height="35.0443" rx="0" ry="0" fill="#e5e5e5" stroke="#717171" stroke-linecap="square" stroke-width=".5"/>
</g>
<g fill="#ffcb35" stroke="#000" stroke-linecap="square">
<ellipse cx="92.1408" cy="114.239" rx="10.8866" ry="4.39308" stroke-width=".5"/>
<ellipse cx="92.1408" cy="134.185" rx="10.8866" ry="4.39308" stroke-width=".499999"/>
<ellipse cx="92.1408" cy="152.199" rx="10.8866" ry="4.39308" stroke-width=".499999"/>
</g>
<g fill="#28a4ff" stroke="#000" stroke-linecap="square" stroke-width=".499999">
<ellipse cx="144.827" cy="143.316" rx="10.8866" ry="4.39308"/>
<ellipse cx="144.827" cy="159.143" rx="10.8866" ry="4.39308"/>
<ellipse cx="59.4364" cy="142.823" rx="7.36455" ry="4.39308"/>
<ellipse cx="144.827" cy="129.196" rx="10.8866" ry="4.39308"/>
<ellipse cx="143.077" cy="180.53" rx="10.8866" ry="4.39308"/>
</g>
<ellipse cx="110.386" cy="180.53" rx="10.8866" ry="4.39308" fill="#ffcb35" stroke="#000" stroke-linecap="square" stroke-width=".499999"/>
<text x="110.90907" y="179.42688" font-size="3.175px" xml:space="preserve"><tspan x="110.90907" y="179.42688" dy="0.60000002" text-align="center" text-anchor="middle">Accessible</tspan><tspan x="110.90907" y="183.39563"><tspan font-size="3.175px" text-align="center" text-anchor="middle">for S</tspan>W</tspan></text>
<text x="143.5869" y="179.52795" xml:space="preserve"><tspan x="143.5869" y="179.52795" dy="1 0 0 0 0 0" font-family="sans-serif" font-size="2.82222px" text-align="center" text-anchor="middle" style="font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal">Inaccessible</tspan><tspan x="143.5869" y="183.36786" font-size="3.175px"><tspan font-size="3.175px" text-align="center" text-anchor="middle">for S</tspan>W</tspan></text>
<g font-size="3.175px">
<text x="91.95018" y="115.29005" xml:space="preserve"><tspan x="91.95018" y="115.29005" font-size="3.175px"><tspan font-size="3.175px" text-align="center" text-anchor="middle">Ready</tspan></tspan></text>
<text x="145.25127" y="130.49019" xml:space="preserve"><tspan x="145.25127" y="130.49019" font-size="3.175px"><tspan font-size="3.175px" text-align="center" text-anchor="middle">TX OK</tspan></tspan></text>
<text x="145.31845" y="144.43121" xml:space="preserve"><tspan x="145.31845" y="144.43121" font-size="3.175px"><tspan font-size="3.175px" text-align="center" text-anchor="middle">Aborted</tspan></tspan></text>
<text x="145.40399" y="160.36035" xml:space="preserve"><tspan x="145.40399" y="160.36035" font-size="3.175px"><tspan font-size="3.175px" text-align="center" text-anchor="middle">TX failed</tspan></tspan></text>
<text x="91.823967" y="133.53941" text-align="center" text-anchor="middle" style="line-height:0.9" xml:space="preserve"><tspan x="91.823967" y="133.53941" text-align="center"><tspan font-size="3.175px" text-align="center" text-anchor="middle">TX in</tspan></tspan><tspan x="91.823967" y="136.39691" text-align="center">progress</tspan></text>
<text x="91.648918" y="151.84813" text-align="center" text-anchor="middle" style="line-height:0.9" xml:space="preserve"><tspan x="91.648918" y="151.84813" text-align="center"><tspan font-size="3.175px" text-align="center" text-anchor="middle">Abort in</tspan></tspan><tspan x="91.648918" y="154.70563" text-align="center">progress</tspan></text>
<text x="59.456043" y="143.91658" xml:space="preserve"><tspan x="59.456043" y="143.91658" font-size="3.175px"><tspan font-size="3.175px" text-align="center" text-anchor="middle">Empty</tspan></tspan></text>
</g>
<g fill="none">
<g stroke="#000">
<rect x="52.3943" y="171.63" width="106.581" height="16.601" rx="0" ry="0" stroke-linecap="square" stroke-width=".499999"/>
<g stroke-width=".6">
<path d="m106.383 159.046h26.4967" marker-end="url(#Arrow2Mend)"/>
<path d="m103.138 152.268h41.5564v-3.92426" marker-end="url(#marker1856)"/>
<path d="m106.38 129.354h17.7785"/>
<path d="m125.818 129.359h7.2418" marker-end="url(#marker1964)"/>
</g>
<path d="m124.169 129.354a0.959514 0.97091 0 0 1 0.47587-0.84557 0.959514 0.97091 0 0 1 0.96164-3e-3 0.959514 0.97091 0 0 1 0.48149 0.84231" stroke-linecap="square" stroke-width=".600001"/>
<path d="m55.7026 180.832h34.8131" marker-end="url(#marker2074)" stroke-width=".6"/>
</g>
<g>
<path d="m55.6464 185.744h34.8131" marker-end="url(#marker2074-3)" stroke="#28a4ff" stroke-width=".600001"/>
<g stroke-width=".6">
<path d="m94.0487 129.889v-10.6493" marker-end="url(#marker3373)" stroke="#000"/>
<path d="m89.7534 118.621v10.662" marker-end="url(#marker3517)" stroke="#000"/>
<path d="m92.119 138.812v7.9718" marker-end="url(#marker3667)" stroke="#28a4ff"/>
</g>
</g>
</g>
<text transform="matrix(.264583 0 0 .264583 91.8919 139.964)" x="26.959213" y="9.11724" fill="#2aa1ff" filter="url(#filter1204-6-2-9-1-3-1)" font-size="12px" stroke-width="3.77953" text-align="center" text-anchor="middle" style="line-height:1.1" xml:space="preserve"><tspan x="26.959213" y="9.11724" text-align="center">Set</tspan><tspan x="26.959213" y="22.31724" text-align="center">abort</tspan></text>
<text transform="translate(49.0277 104.823)" x="57.620724" y="16.855087" filter="url(#filter1204)" font-size="3.175px" text-align="center" text-anchor="middle" style="line-height:1.1" xml:space="preserve"><tspan x="57.620724" y="16.855087" text-align="center">Transmission</tspan><tspan x="57.620724" y="20.347588" text-align="center">unsuccesfull</tspan></text>
<g font-size="12px" stroke-width="3.77953" text-anchor="middle">
<text transform="matrix(.264583 0 0 .264583 68.5988 118.913)" x="38.824219" y="9.1171875" filter="url(#filter1204)" text-align="center" style="line-height:1.1" xml:space="preserve"><tspan x="38.824219" y="9.1171875" text-align="center">Transmission</tspan><tspan x="38.824219" y="22.317188" text-align="center">starts</tspan></text>
<text transform="matrix(.264583 0 0 .264583 106.802 130.509)" x="38.824219" y="9.1171875" filter="url(#filter1204)" text-align="center" style="line-height:1.1" xml:space="preserve"><tspan x="38.824219" y="9.1171875" text-align="center">Transmission</tspan><tspan x="38.824219" y="22.317188" text-align="center">succesfull</tspan></text>
<text transform="matrix(.264583 0 0 .264583 107.77 145.476)" x="38.824219" y="9.1171875" filter="url(#filter1204)" text-align="center" style="line-height:1.1" xml:space="preserve"><tspan x="38.824219" y="9.1171875" text-align="center">Transmission</tspan><tspan x="38.824219" y="22.317188" text-align="center">sborted</tspan></text>
</g>
<g stroke-width="3.77953" text-anchor="middle">
<text transform="matrix(.264583 0 0 .264583 107.574 155.948)" x="38.824219" y="9.1171875" filter="url(#filter1204)" font-size="10.6667px" text-align="center" style="line-height:1.1" xml:space="preserve"><tspan x="38.824219" y="9.1171875" text-align="center">Retransmit</tspan><tspan x="38.824219" y="20.850557" text-align="center">limit reached or</tspan><tspan x="38.824219" y="32.583927" text-align="center">node went bus off</tspan><tspan x="38.824219" y="44.317299" text-align="center"/></text>
<text transform="matrix(.264583 0 0 .264583 60.7127 177.384)" x="38.824539" y="9.1173134" filter="url(#filter1204-6)" font-size="12px" text-align="center" style="line-height:1.1" xml:space="preserve"><tspan x="38.824539" y="9.1173134" font-size="12px" stroke-width="3.77953" text-align="center" text-anchor="middle">Transmission result</tspan></text>
<text transform="matrix(.264583 0 0 .264583 45.6885 173.226)" x="57.727047" y="9.11724" filter="url(#filter1204-6-9)" font-size="12px" text-align="center" style="line-height:1.1" xml:space="preserve"><tspan x="57.727047" y="9.11724" font-size="12px" stroke-width="3.77953" text-align="center" text-anchor="middle">Legend:</tspan></text>
</g>
<g fill="#2aa1ff" font-size="12px" stroke-width="3.77953" text-anchor="middle">
<text transform="matrix(.264583 0 0 .264583 57.0045 182.079)" x="57.727047" y="9.11724" filter="url(#filter1204-6-2)" text-align="center" style="line-height:1.1" xml:space="preserve"><tspan x="57.727047" y="9.11724" fill="#2aa1ff" font-size="12px" stroke-width="3.77953" text-align="center" text-anchor="middle">SW command</tspan></text>
<text transform="matrix(.264583 0 0 .264583 57.7865 110.104)" x="40.822609" y="9.11724" filter="url(#filter1204-6-2-9)" text-align="center" style="line-height:1.1" xml:space="preserve"><tspan x="40.822609" y="9.11724" fill="#2aa1ff" font-size="12px" stroke-width="3.77953" text-align="center" text-anchor="middle">Set ready</tspan></text>
<text transform="matrix(.264583 0 0 .264583 116.893 107.491)" x="28.049065" y="9.1172523" filter="url(#filter1204-6-2-9-4)" text-align="center" style="line-height:1.1" xml:space="preserve"><tspan x="28.049065" y="9.1172523" fill="#2aa1ff" font-size="12px" stroke-width="3.77953" text-align="center" text-anchor="middle">Set ready</tspan></text>
<text transform="matrix(.264583 0 0 .264583 87.5687 166.324)" x="28.049065" y="9.1172523" filter="url(#filter1204-6-2-9-1)" text-align="center" style="line-height:1.1" xml:space="preserve"><tspan x="28.049065" y="9.1172523" fill="#2aa1ff" font-size="12px" stroke-width="3.77953" text-align="center" text-anchor="middle">Set empty</tspan></text>
<text transform="matrix(.264583 0 0 .264583 106.53 113.074)" x="30.228771" y="8.9063139" filter="url(#filter1204-6-2-9-1-3)" text-align="center" style="line-height:1.1" xml:space="preserve"><tspan x="30.228771" y="8.9063139" fill="#2aa1ff" font-size="12px" stroke-width="3.77953" text-align="center" text-anchor="middle">Set abort</tspan></text>
</g>
</g>
</svg>

After

Width:  |  Height:  |  Size: 16 KiB

View File

@@ -5234,6 +5234,14 @@ T: git git://linuxtv.org/media_tree.git
F: Documentation/devicetree/bindings/media/allwinner,sun6i-a31-csi.yaml
F: drivers/media/platform/sunxi/sun6i-csi/
CTU CAN FD DRIVER
M: Pavel Pisa <pisa@cmp.felk.cvut.cz>
M: Ondrej Ille <ondrej.ille@gmail.com>
L: linux-can@vger.kernel.org
S: Maintained
F: Documentation/devicetree/bindings/net/can/ctu,ctucanfd.yaml
F: drivers/net/can/ctucanfd/
CW1200 WLAN driver
M: Solomon Peachy <pizza@shaftnet.org>
S: Maintained
@@ -21632,7 +21640,7 @@ M: Appana Durga Kedareswara rao <appana.durga.rao@xilinx.com>
R: Naga Sureshkumar Relli <naga.sureshkumar.relli@xilinx.com>
L: linux-can@vger.kernel.org
S: Maintained
F: Documentation/devicetree/bindings/net/can/xilinx_can.txt
F: Documentation/devicetree/bindings/net/can/xilinx,can.yaml
F: drivers/net/can/xilinx_can.c
XILINX GPIO DRIVER

View File

@@ -170,6 +170,7 @@ config PCH_CAN
source "drivers/net/can/c_can/Kconfig"
source "drivers/net/can/cc770/Kconfig"
source "drivers/net/can/ctucanfd/Kconfig"
source "drivers/net/can/ifi_canfd/Kconfig"
source "drivers/net/can/m_can/Kconfig"
source "drivers/net/can/mscan/Kconfig"

View File

@@ -16,6 +16,7 @@ obj-y += softing/
obj-$(CONFIG_CAN_AT91) += at91_can.o
obj-$(CONFIG_CAN_CC770) += cc770/
obj-$(CONFIG_CAN_C_CAN) += c_can/
obj-$(CONFIG_CAN_CTUCANFD) += ctucanfd/
obj-$(CONFIG_CAN_FLEXCAN) += flexcan/
obj-$(CONFIG_CAN_GRCAN) += grcan.o
obj-$(CONFIG_CAN_IFI_CANFD) += ifi_canfd/

View File

@@ -0,0 +1,34 @@
config CAN_CTUCANFD
tristate "CTU CAN-FD IP core"
help
This driver adds support for the CTU CAN FD open-source IP core.
More documentation and core sources at project page
(https://gitlab.fel.cvut.cz/canbus/ctucanfd_ip_core).
The core integration to Xilinx Zynq system as platform driver
is available (https://gitlab.fel.cvut.cz/canbus/zynq/zynq-can-sja1000-top).
Implementation on Intel FPGA-based PCI Express board is available
from project (https://gitlab.fel.cvut.cz/canbus/pcie-ctucanfd) and
on Intel SoC from project (https://gitlab.fel.cvut.cz/canbus/intel-soc-ctucanfd).
Guidepost CTU FEE CAN bus projects page https://canbus.pages.fel.cvut.cz/ .
config CAN_CTUCANFD_PCI
tristate "CTU CAN-FD IP core PCI/PCIe driver"
depends on CAN_CTUCANFD
depends on PCI
help
This driver adds PCI/PCIe support for CTU CAN-FD IP core.
The project providing FPGA design for Intel EP4CGX15 based DB4CGX15
PCIe board with PiKRON.com designed transceiver riser shield is available
at https://gitlab.fel.cvut.cz/canbus/pcie-ctucanfd .
config CAN_CTUCANFD_PLATFORM
tristate "CTU CAN-FD IP core platform (FPGA, SoC) driver"
depends on CAN_CTUCANFD
depends on OF || COMPILE_TEST
help
The core has been tested together with OpenCores SJA1000
modified to be CAN FD frames tolerant on MicroZed Zynq based
MZ_APO education kits designed by Petr Porazil from PiKRON.com
company. FPGA design https://gitlab.fel.cvut.cz/canbus/zynq/zynq-can-sja1000-top.
The kit description at the Computer Architectures course pages
https://cw.fel.cvut.cz/wiki/courses/b35apo/documentation/mz_apo/start .

View File

@@ -0,0 +1,10 @@
# SPDX-License-Identifier: GPL-2.0-or-later
#
# Makefile for the CTU CAN-FD IP module drivers
#
obj-$(CONFIG_CAN_CTUCANFD) := ctucanfd.o
ctucanfd-y := ctucanfd_base.o
obj-$(CONFIG_CAN_CTUCANFD_PCI) += ctucanfd_pci.o
obj-$(CONFIG_CAN_CTUCANFD_PLATFORM) += ctucanfd_platform.o

View File

@@ -0,0 +1,82 @@
/* SPDX-License-Identifier: GPL-2.0-or-later */
/*******************************************************************************
*
* CTU CAN FD IP Core
*
* Copyright (C) 2015-2018 Ondrej Ille <ondrej.ille@gmail.com> FEE CTU
* Copyright (C) 2018-2021 Ondrej Ille <ondrej.ille@gmail.com> self-funded
* Copyright (C) 2018-2019 Martin Jerabek <martin.jerabek01@gmail.com> FEE CTU
* Copyright (C) 2018-2021 Pavel Pisa <pisa@cmp.felk.cvut.cz> FEE CTU/self-funded
*
* Project advisors:
* Jiri Novak <jnovak@fel.cvut.cz>
* Pavel Pisa <pisa@cmp.felk.cvut.cz>
*
* Department of Measurement (http://meas.fel.cvut.cz/)
* Faculty of Electrical Engineering (http://www.fel.cvut.cz)
* Czech Technical University (http://www.cvut.cz/)
******************************************************************************/
#ifndef __CTUCANFD__
#define __CTUCANFD__
#include <linux/netdevice.h>
#include <linux/can/dev.h>
#include <linux/list.h>
enum ctu_can_fd_can_registers;
struct ctucan_priv {
struct can_priv can; /* must be first member! */
void __iomem *mem_base;
u32 (*read_reg)(struct ctucan_priv *priv,
enum ctu_can_fd_can_registers reg);
void (*write_reg)(struct ctucan_priv *priv,
enum ctu_can_fd_can_registers reg, u32 val);
unsigned int txb_head;
unsigned int txb_tail;
u32 txb_prio;
unsigned int ntxbufs;
spinlock_t tx_lock; /* spinlock to serialize allocation and processing of TX buffers */
struct napi_struct napi;
struct device *dev;
struct clk *can_clk;
int irq_flags;
unsigned long drv_flags;
u32 rxfrm_first_word;
struct list_head peers_on_pdev;
};
/**
* ctucan_probe_common - Device type independent registration call
*
* This function does all the memory allocation and registration for the CAN
* device.
*
* @dev: Handle to the generic device structure
* @addr: Base address of CTU CAN FD core address
* @irq: Interrupt number
* @ntxbufs: Number of implemented Tx buffers
* @can_clk_rate: Clock rate, if 0 then clock are taken from device node
* @pm_enable_call: Whether pm_runtime_enable should be called
* @set_drvdata_fnc: Function to set network driver data for physical device
*
* Return: 0 on success and failure value on error
*/
int ctucan_probe_common(struct device *dev, void __iomem *addr,
int irq, unsigned int ntxbufs,
unsigned long can_clk_rate,
int pm_enable_call,
void (*set_drvdata_fnc)(struct device *dev,
struct net_device *ndev));
int ctucan_suspend(struct device *dev) __maybe_unused;
int ctucan_resume(struct device *dev) __maybe_unused;
#endif /*__CTUCANFD__*/

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,77 @@
/* SPDX-License-Identifier: GPL-2.0-or-later */
/*******************************************************************************
*
* CTU CAN FD IP Core
*
* Copyright (C) 2015-2018 Ondrej Ille <ondrej.ille@gmail.com> FEE CTU
* Copyright (C) 2018-2021 Ondrej Ille <ondrej.ille@gmail.com> self-funded
* Copyright (C) 2018-2019 Martin Jerabek <martin.jerabek01@gmail.com> FEE CTU
* Copyright (C) 2018-2021 Pavel Pisa <pisa@cmp.felk.cvut.cz> FEE CTU/self-funded
*
* Project advisors:
* Jiri Novak <jnovak@fel.cvut.cz>
* Pavel Pisa <pisa@cmp.felk.cvut.cz>
*
* Department of Measurement (http://meas.fel.cvut.cz/)
* Faculty of Electrical Engineering (http://www.fel.cvut.cz)
* Czech Technical University (http://www.cvut.cz/)
******************************************************************************/
/* This file is autogenerated, DO NOT EDIT! */
#ifndef __CTU_CAN_FD_CAN_FD_FRAME_FORMAT__
#define __CTU_CAN_FD_CAN_FD_FRAME_FORMAT__
#include <linux/bits.h>
/* CAN_Frame_format memory map */
enum ctu_can_fd_can_frame_format {
CTUCANFD_FRAME_FORMAT_W = 0x0,
CTUCANFD_IDENTIFIER_W = 0x4,
CTUCANFD_TIMESTAMP_L_W = 0x8,
CTUCANFD_TIMESTAMP_U_W = 0xc,
CTUCANFD_DATA_1_4_W = 0x10,
CTUCANFD_DATA_5_8_W = 0x14,
CTUCANFD_DATA_61_64_W = 0x4c,
};
/* CAN_FD_Frame_format memory region */
/* FRAME_FORMAT_W registers */
#define REG_FRAME_FORMAT_W_DLC GENMASK(3, 0)
#define REG_FRAME_FORMAT_W_RTR BIT(5)
#define REG_FRAME_FORMAT_W_IDE BIT(6)
#define REG_FRAME_FORMAT_W_FDF BIT(7)
#define REG_FRAME_FORMAT_W_BRS BIT(9)
#define REG_FRAME_FORMAT_W_ESI_RSV BIT(10)
#define REG_FRAME_FORMAT_W_RWCNT GENMASK(15, 11)
/* IDENTIFIER_W registers */
#define REG_IDENTIFIER_W_IDENTIFIER_EXT GENMASK(17, 0)
#define REG_IDENTIFIER_W_IDENTIFIER_BASE GENMASK(28, 18)
/* TIMESTAMP_L_W registers */
#define REG_TIMESTAMP_L_W_TIME_STAMP_L_W GENMASK(31, 0)
/* TIMESTAMP_U_W registers */
#define REG_TIMESTAMP_U_W_TIMESTAMP_U_W GENMASK(31, 0)
/* DATA_1_4_W registers */
#define REG_DATA_1_4_W_DATA_1 GENMASK(7, 0)
#define REG_DATA_1_4_W_DATA_2 GENMASK(15, 8)
#define REG_DATA_1_4_W_DATA_3 GENMASK(23, 16)
#define REG_DATA_1_4_W_DATA_4 GENMASK(31, 24)
/* DATA_5_8_W registers */
#define REG_DATA_5_8_W_DATA_5 GENMASK(7, 0)
#define REG_DATA_5_8_W_DATA_6 GENMASK(15, 8)
#define REG_DATA_5_8_W_DATA_7 GENMASK(23, 16)
#define REG_DATA_5_8_W_DATA_8 GENMASK(31, 24)
/* DATA_61_64_W registers */
#define REG_DATA_61_64_W_DATA_61 GENMASK(7, 0)
#define REG_DATA_61_64_W_DATA_62 GENMASK(15, 8)
#define REG_DATA_61_64_W_DATA_63 GENMASK(23, 16)
#define REG_DATA_61_64_W_DATA_64 GENMASK(31, 24)
#endif

View File

@@ -0,0 +1,325 @@
/* SPDX-License-Identifier: GPL-2.0-or-later */
/*******************************************************************************
*
* CTU CAN FD IP Core
*
* Copyright (C) 2015-2018 Ondrej Ille <ondrej.ille@gmail.com> FEE CTU
* Copyright (C) 2018-2021 Ondrej Ille <ondrej.ille@gmail.com> self-funded
* Copyright (C) 2018-2019 Martin Jerabek <martin.jerabek01@gmail.com> FEE CTU
* Copyright (C) 2018-2021 Pavel Pisa <pisa@cmp.felk.cvut.cz> FEE CTU/self-funded
*
* Project advisors:
* Jiri Novak <jnovak@fel.cvut.cz>
* Pavel Pisa <pisa@cmp.felk.cvut.cz>
*
* Department of Measurement (http://meas.fel.cvut.cz/)
* Faculty of Electrical Engineering (http://www.fel.cvut.cz)
* Czech Technical University (http://www.cvut.cz/)
******************************************************************************/
/* This file is autogenerated, DO NOT EDIT! */
#ifndef __CTU_CAN_FD_CAN_FD_REGISTER_MAP__
#define __CTU_CAN_FD_CAN_FD_REGISTER_MAP__
#include <linux/bits.h>
/* CAN_Registers memory map */
enum ctu_can_fd_can_registers {
CTUCANFD_DEVICE_ID = 0x0,
CTUCANFD_VERSION = 0x2,
CTUCANFD_MODE = 0x4,
CTUCANFD_SETTINGS = 0x6,
CTUCANFD_STATUS = 0x8,
CTUCANFD_COMMAND = 0xc,
CTUCANFD_INT_STAT = 0x10,
CTUCANFD_INT_ENA_SET = 0x14,
CTUCANFD_INT_ENA_CLR = 0x18,
CTUCANFD_INT_MASK_SET = 0x1c,
CTUCANFD_INT_MASK_CLR = 0x20,
CTUCANFD_BTR = 0x24,
CTUCANFD_BTR_FD = 0x28,
CTUCANFD_EWL = 0x2c,
CTUCANFD_ERP = 0x2d,
CTUCANFD_FAULT_STATE = 0x2e,
CTUCANFD_REC = 0x30,
CTUCANFD_TEC = 0x32,
CTUCANFD_ERR_NORM = 0x34,
CTUCANFD_ERR_FD = 0x36,
CTUCANFD_CTR_PRES = 0x38,
CTUCANFD_FILTER_A_MASK = 0x3c,
CTUCANFD_FILTER_A_VAL = 0x40,
CTUCANFD_FILTER_B_MASK = 0x44,
CTUCANFD_FILTER_B_VAL = 0x48,
CTUCANFD_FILTER_C_MASK = 0x4c,
CTUCANFD_FILTER_C_VAL = 0x50,
CTUCANFD_FILTER_RAN_LOW = 0x54,
CTUCANFD_FILTER_RAN_HIGH = 0x58,
CTUCANFD_FILTER_CONTROL = 0x5c,
CTUCANFD_FILTER_STATUS = 0x5e,
CTUCANFD_RX_MEM_INFO = 0x60,
CTUCANFD_RX_POINTERS = 0x64,
CTUCANFD_RX_STATUS = 0x68,
CTUCANFD_RX_SETTINGS = 0x6a,
CTUCANFD_RX_DATA = 0x6c,
CTUCANFD_TX_STATUS = 0x70,
CTUCANFD_TX_COMMAND = 0x74,
CTUCANFD_TX_PRIORITY = 0x78,
CTUCANFD_ERR_CAPT = 0x7c,
CTUCANFD_ALC = 0x7e,
CTUCANFD_TRV_DELAY = 0x80,
CTUCANFD_SSP_CFG = 0x82,
CTUCANFD_RX_FR_CTR = 0x84,
CTUCANFD_TX_FR_CTR = 0x88,
CTUCANFD_DEBUG_REGISTER = 0x8c,
CTUCANFD_YOLO_REG = 0x90,
CTUCANFD_TIMESTAMP_LOW = 0x94,
CTUCANFD_TIMESTAMP_HIGH = 0x98,
CTUCANFD_TXTB1_DATA_1 = 0x100,
CTUCANFD_TXTB1_DATA_2 = 0x104,
CTUCANFD_TXTB1_DATA_20 = 0x14c,
CTUCANFD_TXTB2_DATA_1 = 0x200,
CTUCANFD_TXTB2_DATA_2 = 0x204,
CTUCANFD_TXTB2_DATA_20 = 0x24c,
CTUCANFD_TXTB3_DATA_1 = 0x300,
CTUCANFD_TXTB3_DATA_2 = 0x304,
CTUCANFD_TXTB3_DATA_20 = 0x34c,
CTUCANFD_TXTB4_DATA_1 = 0x400,
CTUCANFD_TXTB4_DATA_2 = 0x404,
CTUCANFD_TXTB4_DATA_20 = 0x44c,
};
/* Control_registers memory region */
/* DEVICE_ID VERSION registers */
#define REG_DEVICE_ID_DEVICE_ID GENMASK(15, 0)
#define REG_DEVICE_ID_VER_MINOR GENMASK(23, 16)
#define REG_DEVICE_ID_VER_MAJOR GENMASK(31, 24)
/* MODE SETTINGS registers */
#define REG_MODE_RST BIT(0)
#define REG_MODE_BMM BIT(1)
#define REG_MODE_STM BIT(2)
#define REG_MODE_AFM BIT(3)
#define REG_MODE_FDE BIT(4)
#define REG_MODE_ACF BIT(7)
#define REG_MODE_TSTM BIT(8)
#define REG_MODE_RTRLE BIT(16)
#define REG_MODE_RTRTH GENMASK(20, 17)
#define REG_MODE_ILBP BIT(21)
#define REG_MODE_ENA BIT(22)
#define REG_MODE_NISOFD BIT(23)
#define REG_MODE_PEX BIT(24)
#define REG_MODE_TBFBO BIT(25)
#define REG_MODE_FDRF BIT(26)
/* STATUS registers */
#define REG_STATUS_RXNE BIT(0)
#define REG_STATUS_DOR BIT(1)
#define REG_STATUS_TXNF BIT(2)
#define REG_STATUS_EFT BIT(3)
#define REG_STATUS_RXS BIT(4)
#define REG_STATUS_TXS BIT(5)
#define REG_STATUS_EWL BIT(6)
#define REG_STATUS_IDLE BIT(7)
#define REG_STATUS_PEXS BIT(8)
/* COMMAND registers */
#define REG_COMMAND_RRB BIT(2)
#define REG_COMMAND_CDO BIT(3)
#define REG_COMMAND_ERCRST BIT(4)
#define REG_COMMAND_RXFCRST BIT(5)
#define REG_COMMAND_TXFCRST BIT(6)
#define REG_COMMAND_CPEXS BIT(7)
/* INT_STAT registers */
#define REG_INT_STAT_RXI BIT(0)
#define REG_INT_STAT_TXI BIT(1)
#define REG_INT_STAT_EWLI BIT(2)
#define REG_INT_STAT_DOI BIT(3)
#define REG_INT_STAT_FCSI BIT(4)
#define REG_INT_STAT_ALI BIT(5)
#define REG_INT_STAT_BEI BIT(6)
#define REG_INT_STAT_OFI BIT(7)
#define REG_INT_STAT_RXFI BIT(8)
#define REG_INT_STAT_BSI BIT(9)
#define REG_INT_STAT_RBNEI BIT(10)
#define REG_INT_STAT_TXBHCI BIT(11)
/* INT_ENA_SET registers */
#define REG_INT_ENA_SET_INT_ENA_SET GENMASK(11, 0)
/* INT_ENA_CLR registers */
#define REG_INT_ENA_CLR_INT_ENA_CLR GENMASK(11, 0)
/* INT_MASK_SET registers */
#define REG_INT_MASK_SET_INT_MASK_SET GENMASK(11, 0)
/* INT_MASK_CLR registers */
#define REG_INT_MASK_CLR_INT_MASK_CLR GENMASK(11, 0)
/* BTR registers */
#define REG_BTR_PROP GENMASK(6, 0)
#define REG_BTR_PH1 GENMASK(12, 7)
#define REG_BTR_PH2 GENMASK(18, 13)
#define REG_BTR_BRP GENMASK(26, 19)
#define REG_BTR_SJW GENMASK(31, 27)
/* BTR_FD registers */
#define REG_BTR_FD_PROP_FD GENMASK(5, 0)
#define REG_BTR_FD_PH1_FD GENMASK(11, 7)
#define REG_BTR_FD_PH2_FD GENMASK(17, 13)
#define REG_BTR_FD_BRP_FD GENMASK(26, 19)
#define REG_BTR_FD_SJW_FD GENMASK(31, 27)
/* EWL ERP FAULT_STATE registers */
#define REG_EWL_EW_LIMIT GENMASK(7, 0)
#define REG_EWL_ERP_LIMIT GENMASK(15, 8)
#define REG_EWL_ERA BIT(16)
#define REG_EWL_ERP BIT(17)
#define REG_EWL_BOF BIT(18)
/* REC TEC registers */
#define REG_REC_REC_VAL GENMASK(8, 0)
#define REG_REC_TEC_VAL GENMASK(24, 16)
/* ERR_NORM ERR_FD registers */
#define REG_ERR_NORM_ERR_NORM_VAL GENMASK(15, 0)
#define REG_ERR_NORM_ERR_FD_VAL GENMASK(31, 16)
/* CTR_PRES registers */
#define REG_CTR_PRES_CTPV GENMASK(8, 0)
#define REG_CTR_PRES_PTX BIT(9)
#define REG_CTR_PRES_PRX BIT(10)
#define REG_CTR_PRES_ENORM BIT(11)
#define REG_CTR_PRES_EFD BIT(12)
/* FILTER_A_MASK registers */
#define REG_FILTER_A_MASK_BIT_MASK_A_VAL GENMASK(28, 0)
/* FILTER_A_VAL registers */
#define REG_FILTER_A_VAL_BIT_VAL_A_VAL GENMASK(28, 0)
/* FILTER_B_MASK registers */
#define REG_FILTER_B_MASK_BIT_MASK_B_VAL GENMASK(28, 0)
/* FILTER_B_VAL registers */
#define REG_FILTER_B_VAL_BIT_VAL_B_VAL GENMASK(28, 0)
/* FILTER_C_MASK registers */
#define REG_FILTER_C_MASK_BIT_MASK_C_VAL GENMASK(28, 0)
/* FILTER_C_VAL registers */
#define REG_FILTER_C_VAL_BIT_VAL_C_VAL GENMASK(28, 0)
/* FILTER_RAN_LOW registers */
#define REG_FILTER_RAN_LOW_BIT_RAN_LOW_VAL GENMASK(28, 0)
/* FILTER_RAN_HIGH registers */
#define REG_FILTER_RAN_HIGH_BIT_RAN_HIGH_VAL GENMASK(28, 0)
/* FILTER_CONTROL FILTER_STATUS registers */
#define REG_FILTER_CONTROL_FANB BIT(0)
#define REG_FILTER_CONTROL_FANE BIT(1)
#define REG_FILTER_CONTROL_FAFB BIT(2)
#define REG_FILTER_CONTROL_FAFE BIT(3)
#define REG_FILTER_CONTROL_FBNB BIT(4)
#define REG_FILTER_CONTROL_FBNE BIT(5)
#define REG_FILTER_CONTROL_FBFB BIT(6)
#define REG_FILTER_CONTROL_FBFE BIT(7)
#define REG_FILTER_CONTROL_FCNB BIT(8)
#define REG_FILTER_CONTROL_FCNE BIT(9)
#define REG_FILTER_CONTROL_FCFB BIT(10)
#define REG_FILTER_CONTROL_FCFE BIT(11)
#define REG_FILTER_CONTROL_FRNB BIT(12)
#define REG_FILTER_CONTROL_FRNE BIT(13)
#define REG_FILTER_CONTROL_FRFB BIT(14)
#define REG_FILTER_CONTROL_FRFE BIT(15)
#define REG_FILTER_CONTROL_SFA BIT(16)
#define REG_FILTER_CONTROL_SFB BIT(17)
#define REG_FILTER_CONTROL_SFC BIT(18)
#define REG_FILTER_CONTROL_SFR BIT(19)
/* RX_MEM_INFO registers */
#define REG_RX_MEM_INFO_RX_BUFF_SIZE GENMASK(12, 0)
#define REG_RX_MEM_INFO_RX_MEM_FREE GENMASK(28, 16)
/* RX_POINTERS registers */
#define REG_RX_POINTERS_RX_WPP GENMASK(11, 0)
#define REG_RX_POINTERS_RX_RPP GENMASK(27, 16)
/* RX_STATUS RX_SETTINGS registers */
#define REG_RX_STATUS_RXE BIT(0)
#define REG_RX_STATUS_RXF BIT(1)
#define REG_RX_STATUS_RXMOF BIT(2)
#define REG_RX_STATUS_RXFRC GENMASK(14, 4)
#define REG_RX_STATUS_RTSOP BIT(16)
/* RX_DATA registers */
#define REG_RX_DATA_RX_DATA GENMASK(31, 0)
/* TX_STATUS registers */
#define REG_TX_STATUS_TX1S GENMASK(3, 0)
#define REG_TX_STATUS_TX2S GENMASK(7, 4)
#define REG_TX_STATUS_TX3S GENMASK(11, 8)
#define REG_TX_STATUS_TX4S GENMASK(15, 12)
/* TX_COMMAND registers */
#define REG_TX_COMMAND_TXCE BIT(0)
#define REG_TX_COMMAND_TXCR BIT(1)
#define REG_TX_COMMAND_TXCA BIT(2)
#define REG_TX_COMMAND_TXB1 BIT(8)
#define REG_TX_COMMAND_TXB2 BIT(9)
#define REG_TX_COMMAND_TXB3 BIT(10)
#define REG_TX_COMMAND_TXB4 BIT(11)
/* TX_PRIORITY registers */
#define REG_TX_PRIORITY_TXT1P GENMASK(2, 0)
#define REG_TX_PRIORITY_TXT2P GENMASK(6, 4)
#define REG_TX_PRIORITY_TXT3P GENMASK(10, 8)
#define REG_TX_PRIORITY_TXT4P GENMASK(14, 12)
/* ERR_CAPT ALC registers */
#define REG_ERR_CAPT_ERR_POS GENMASK(4, 0)
#define REG_ERR_CAPT_ERR_TYPE GENMASK(7, 5)
#define REG_ERR_CAPT_ALC_BIT GENMASK(20, 16)
#define REG_ERR_CAPT_ALC_ID_FIELD GENMASK(23, 21)
/* TRV_DELAY SSP_CFG registers */
#define REG_TRV_DELAY_TRV_DELAY_VALUE GENMASK(6, 0)
#define REG_TRV_DELAY_SSP_OFFSET GENMASK(23, 16)
#define REG_TRV_DELAY_SSP_SRC GENMASK(25, 24)
/* RX_FR_CTR registers */
#define REG_RX_FR_CTR_RX_FR_CTR_VAL GENMASK(31, 0)
/* TX_FR_CTR registers */
#define REG_TX_FR_CTR_TX_FR_CTR_VAL GENMASK(31, 0)
/* DEBUG_REGISTER registers */
#define REG_DEBUG_REGISTER_STUFF_COUNT GENMASK(2, 0)
#define REG_DEBUG_REGISTER_DESTUFF_COUNT GENMASK(5, 3)
#define REG_DEBUG_REGISTER_PC_ARB BIT(6)
#define REG_DEBUG_REGISTER_PC_CON BIT(7)
#define REG_DEBUG_REGISTER_PC_DAT BIT(8)
#define REG_DEBUG_REGISTER_PC_STC BIT(9)
#define REG_DEBUG_REGISTER_PC_CRC BIT(10)
#define REG_DEBUG_REGISTER_PC_CRCD BIT(11)
#define REG_DEBUG_REGISTER_PC_ACK BIT(12)
#define REG_DEBUG_REGISTER_PC_ACKD BIT(13)
#define REG_DEBUG_REGISTER_PC_EOF BIT(14)
#define REG_DEBUG_REGISTER_PC_INT BIT(15)
#define REG_DEBUG_REGISTER_PC_SUSP BIT(16)
#define REG_DEBUG_REGISTER_PC_OVR BIT(17)
#define REG_DEBUG_REGISTER_PC_SOF BIT(18)
/* YOLO_REG registers */
#define REG_YOLO_REG_YOLO_VAL GENMASK(31, 0)
/* TIMESTAMP_LOW registers */
#define REG_TIMESTAMP_LOW_TIMESTAMP_LOW GENMASK(31, 0)
/* TIMESTAMP_HIGH registers */
#define REG_TIMESTAMP_HIGH_TIMESTAMP_HIGH GENMASK(31, 0)
#endif

View File

@@ -0,0 +1,304 @@
// SPDX-License-Identifier: GPL-2.0-or-later
/*******************************************************************************
*
* CTU CAN FD IP Core
*
* Copyright (C) 2015-2018 Ondrej Ille <ondrej.ille@gmail.com> FEE CTU
* Copyright (C) 2018-2021 Ondrej Ille <ondrej.ille@gmail.com> self-funded
* Copyright (C) 2018-2019 Martin Jerabek <martin.jerabek01@gmail.com> FEE CTU
* Copyright (C) 2018-2022 Pavel Pisa <pisa@cmp.felk.cvut.cz> FEE CTU/self-funded
*
* Project advisors:
* Jiri Novak <jnovak@fel.cvut.cz>
* Pavel Pisa <pisa@cmp.felk.cvut.cz>
*
* Department of Measurement (http://meas.fel.cvut.cz/)
* Faculty of Electrical Engineering (http://www.fel.cvut.cz)
* Czech Technical University (http://www.cvut.cz/)
******************************************************************************/
#include <linux/module.h>
#include <linux/pci.h>
#include "ctucanfd.h"
#ifndef PCI_DEVICE_DATA
#define PCI_DEVICE_DATA(vend, dev, data) \
.vendor = PCI_VENDOR_ID_##vend, \
.device = PCI_DEVICE_ID_##vend##_##dev, \
.subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID, 0, 0, \
.driver_data = (kernel_ulong_t)(data)
#endif
#ifndef PCI_VENDOR_ID_TEDIA
#define PCI_VENDOR_ID_TEDIA 0x1760
#endif
#ifndef PCI_DEVICE_ID_TEDIA_CTUCAN_VER21
#define PCI_DEVICE_ID_TEDIA_CTUCAN_VER21 0xff00
#endif
#define CTUCAN_BAR0_CTUCAN_ID 0x0000
#define CTUCAN_BAR0_CRA_BASE 0x4000
#define CYCLONE_IV_CRA_A2P_IE (0x0050)
#define CTUCAN_WITHOUT_CTUCAN_ID 0
#define CTUCAN_WITH_CTUCAN_ID 1
static bool use_msi = true;
module_param(use_msi, bool, 0444);
MODULE_PARM_DESC(use_msi, "PCIe implementation use MSI interrupts. Default: 1 (yes)");
static bool pci_use_second = true;
module_param(pci_use_second, bool, 0444);
MODULE_PARM_DESC(pci_use_second, "Use the second CAN core on PCIe card. Default: 1 (yes)");
struct ctucan_pci_board_data {
void __iomem *bar0_base;
void __iomem *cra_base;
void __iomem *bar1_base;
struct list_head ndev_list_head;
int use_msi;
};
static struct ctucan_pci_board_data *ctucan_pci_get_bdata(struct pci_dev *pdev)
{
return (struct ctucan_pci_board_data *)pci_get_drvdata(pdev);
}
static void ctucan_pci_set_drvdata(struct device *dev,
struct net_device *ndev)
{
struct pci_dev *pdev = container_of(dev, struct pci_dev, dev);
struct ctucan_priv *priv = netdev_priv(ndev);
struct ctucan_pci_board_data *bdata = ctucan_pci_get_bdata(pdev);
list_add(&priv->peers_on_pdev, &bdata->ndev_list_head);
priv->irq_flags = IRQF_SHARED;
}
/**
* ctucan_pci_probe - PCI registration call
* @pdev: Handle to the pci device structure
* @ent: Pointer to the entry from ctucan_pci_tbl
*
* This function does all the memory allocation and registration for the CAN
* device.
*
* Return: 0 on success and failure value on error
*/
static int ctucan_pci_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct device *dev = &pdev->dev;
unsigned long driver_data = ent->driver_data;
struct ctucan_pci_board_data *bdata;
void __iomem *addr;
void __iomem *cra_addr;
void __iomem *bar0_base;
u32 cra_a2p_ie;
u32 ctucan_id = 0;
int ret;
unsigned int ntxbufs;
unsigned int num_cores = 1;
unsigned int core_i = 0;
int irq;
int msi_ok = 0;
ret = pci_enable_device(pdev);
if (ret) {
dev_err(dev, "pci_enable_device FAILED\n");
goto err;
}
ret = pci_request_regions(pdev, KBUILD_MODNAME);
if (ret) {
dev_err(dev, "pci_request_regions FAILED\n");
goto err_disable_device;
}
if (use_msi) {
ret = pci_enable_msi(pdev);
if (!ret) {
dev_info(dev, "MSI enabled\n");
pci_set_master(pdev);
msi_ok = 1;
}
}
dev_info(dev, "ctucan BAR0 0x%08llx 0x%08llx\n",
(long long)pci_resource_start(pdev, 0),
(long long)pci_resource_len(pdev, 0));
dev_info(dev, "ctucan BAR1 0x%08llx 0x%08llx\n",
(long long)pci_resource_start(pdev, 1),
(long long)pci_resource_len(pdev, 1));
addr = pci_iomap(pdev, 1, pci_resource_len(pdev, 1));
if (!addr) {
dev_err(dev, "PCI BAR 1 cannot be mapped\n");
ret = -ENOMEM;
goto err_release_regions;
}
/* Cyclone IV PCI Express Control Registers Area */
bar0_base = pci_iomap(pdev, 0, pci_resource_len(pdev, 0));
if (!bar0_base) {
dev_err(dev, "PCI BAR 0 cannot be mapped\n");
ret = -EIO;
goto err_pci_iounmap_bar1;
}
if (driver_data == CTUCAN_WITHOUT_CTUCAN_ID) {
cra_addr = bar0_base;
num_cores = 2;
} else {
cra_addr = bar0_base + CTUCAN_BAR0_CRA_BASE;
ctucan_id = ioread32(bar0_base + CTUCAN_BAR0_CTUCAN_ID);
dev_info(dev, "ctucan_id 0x%08lx\n", (unsigned long)ctucan_id);
num_cores = ctucan_id & 0xf;
}
irq = pdev->irq;
ntxbufs = 4;
bdata = kzalloc(sizeof(*bdata), GFP_KERNEL);
if (!bdata) {
ret = -ENOMEM;
goto err_pci_iounmap_bar0;
}
INIT_LIST_HEAD(&bdata->ndev_list_head);
bdata->bar0_base = bar0_base;
bdata->cra_base = cra_addr;
bdata->bar1_base = addr;
bdata->use_msi = msi_ok;
pci_set_drvdata(pdev, bdata);
ret = ctucan_probe_common(dev, addr, irq, ntxbufs, 100000000,
0, ctucan_pci_set_drvdata);
if (ret < 0)
goto err_free_board;
core_i++;
while (pci_use_second && (core_i < num_cores)) {
addr += 0x4000;
ret = ctucan_probe_common(dev, addr, irq, ntxbufs, 100000000,
0, ctucan_pci_set_drvdata);
if (ret < 0) {
dev_info(dev, "CTU CAN FD core %d initialization failed\n",
core_i);
break;
}
core_i++;
}
/* enable interrupt in
* Avalon-MM to PCI Express Interrupt Enable Register
*/
cra_a2p_ie = ioread32(cra_addr + CYCLONE_IV_CRA_A2P_IE);
dev_info(dev, "cra_a2p_ie 0x%08x\n", cra_a2p_ie);
cra_a2p_ie |= 1;
iowrite32(cra_a2p_ie, cra_addr + CYCLONE_IV_CRA_A2P_IE);
cra_a2p_ie = ioread32(cra_addr + CYCLONE_IV_CRA_A2P_IE);
dev_info(dev, "cra_a2p_ie 0x%08x\n", cra_a2p_ie);
return 0;
err_free_board:
pci_set_drvdata(pdev, NULL);
kfree(bdata);
err_pci_iounmap_bar0:
pci_iounmap(pdev, cra_addr);
err_pci_iounmap_bar1:
pci_iounmap(pdev, addr);
err_release_regions:
if (msi_ok) {
pci_disable_msi(pdev);
pci_clear_master(pdev);
}
pci_release_regions(pdev);
err_disable_device:
pci_disable_device(pdev);
err:
return ret;
}
/**
* ctucan_pci_remove - Unregister the device after releasing the resources
* @pdev: Handle to the pci device structure
*
* This function frees all the resources allocated to the device.
* Return: 0 always
*/
static void ctucan_pci_remove(struct pci_dev *pdev)
{
struct net_device *ndev;
struct ctucan_priv *priv = NULL;
struct ctucan_pci_board_data *bdata = ctucan_pci_get_bdata(pdev);
dev_dbg(&pdev->dev, "ctucan_remove");
if (!bdata) {
dev_err(&pdev->dev, "%s: no list of devices\n", __func__);
return;
}
/* disable interrupt in
* Avalon-MM to PCI Express Interrupt Enable Register
*/
if (bdata->cra_base)
iowrite32(0, bdata->cra_base + CYCLONE_IV_CRA_A2P_IE);
while ((priv = list_first_entry_or_null(&bdata->ndev_list_head, struct ctucan_priv,
peers_on_pdev)) != NULL) {
ndev = priv->can.dev;
unregister_candev(ndev);
netif_napi_del(&priv->napi);
list_del_init(&priv->peers_on_pdev);
free_candev(ndev);
}
pci_iounmap(pdev, bdata->bar1_base);
if (bdata->use_msi) {
pci_disable_msi(pdev);
pci_clear_master(pdev);
}
pci_release_regions(pdev);
pci_disable_device(pdev);
pci_iounmap(pdev, bdata->bar0_base);
pci_set_drvdata(pdev, NULL);
kfree(bdata);
}
static SIMPLE_DEV_PM_OPS(ctucan_pci_pm_ops, ctucan_suspend, ctucan_resume);
static const struct pci_device_id ctucan_pci_tbl[] = {
{PCI_DEVICE_DATA(TEDIA, CTUCAN_VER21,
CTUCAN_WITH_CTUCAN_ID)},
{},
};
static struct pci_driver ctucan_pci_driver = {
.name = KBUILD_MODNAME,
.id_table = ctucan_pci_tbl,
.probe = ctucan_pci_probe,
.remove = ctucan_pci_remove,
.driver.pm = &ctucan_pci_pm_ops,
};
module_pci_driver(ctucan_pci_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Pavel Pisa <pisa@cmp.felk.cvut.cz>");
MODULE_DESCRIPTION("CTU CAN FD for PCI bus");

View File

@@ -0,0 +1,132 @@
// SPDX-License-Identifier: GPL-2.0-or-later
/*******************************************************************************
*
* CTU CAN FD IP Core
*
* Copyright (C) 2015-2018 Ondrej Ille <ondrej.ille@gmail.com> FEE CTU
* Copyright (C) 2018-2021 Ondrej Ille <ondrej.ille@gmail.com> self-funded
* Copyright (C) 2018-2019 Martin Jerabek <martin.jerabek01@gmail.com> FEE CTU
* Copyright (C) 2018-2022 Pavel Pisa <pisa@cmp.felk.cvut.cz> FEE CTU/self-funded
*
* Project advisors:
* Jiri Novak <jnovak@fel.cvut.cz>
* Pavel Pisa <pisa@cmp.felk.cvut.cz>
*
* Department of Measurement (http://meas.fel.cvut.cz/)
* Faculty of Electrical Engineering (http://www.fel.cvut.cz)
* Czech Technical University (http://www.cvut.cz/)
******************************************************************************/
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include "ctucanfd.h"
#define DRV_NAME "ctucanfd"
static void ctucan_platform_set_drvdata(struct device *dev,
struct net_device *ndev)
{
struct platform_device *pdev = container_of(dev, struct platform_device,
dev);
platform_set_drvdata(pdev, ndev);
}
/**
* ctucan_platform_probe - Platform registration call
* @pdev: Handle to the platform device structure
*
* This function does all the memory allocation and registration for the CAN
* device.
*
* Return: 0 on success and failure value on error
*/
static int ctucan_platform_probe(struct platform_device *pdev)
{
struct resource *res; /* IO mem resources */
struct device *dev = &pdev->dev;
void __iomem *addr;
int ret;
unsigned int ntxbufs;
int irq;
/* Get the virtual base address for the device */
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
addr = devm_ioremap_resource(dev, res);
if (IS_ERR(addr)) {
dev_err(dev, "Cannot remap address.\n");
ret = PTR_ERR(addr);
goto err;
}
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_err(dev, "Cannot find interrupt.\n");
ret = irq;
goto err;
}
/* Number of tx bufs might be change in HW for future. If so,
* it will be passed as property via device tree
*/
ntxbufs = 4;
ret = ctucan_probe_common(dev, addr, irq, ntxbufs, 0,
1, ctucan_platform_set_drvdata);
if (ret < 0)
platform_set_drvdata(pdev, NULL);
err:
return ret;
}
/**
* ctucan_platform_remove - Unregister the device after releasing the resources
* @pdev: Handle to the platform device structure
*
* This function frees all the resources allocated to the device.
* Return: 0 always
*/
static int ctucan_platform_remove(struct platform_device *pdev)
{
struct net_device *ndev = platform_get_drvdata(pdev);
struct ctucan_priv *priv = netdev_priv(ndev);
netdev_dbg(ndev, "ctucan_remove");
unregister_candev(ndev);
pm_runtime_disable(&pdev->dev);
netif_napi_del(&priv->napi);
free_candev(ndev);
return 0;
}
static SIMPLE_DEV_PM_OPS(ctucan_platform_pm_ops, ctucan_suspend, ctucan_resume);
/* Match table for OF platform binding */
static const struct of_device_id ctucan_of_match[] = {
{ .compatible = "ctu,ctucanfd-2", },
{ .compatible = "ctu,ctucanfd", },
{ /* end of list */ },
};
MODULE_DEVICE_TABLE(of, ctucan_of_match);
static struct platform_driver ctucanfd_driver = {
.probe = ctucan_platform_probe,
.remove = ctucan_platform_remove,
.driver = {
.name = DRV_NAME,
.pm = &ctucan_platform_pm_ops,
.of_match_table = ctucan_of_match,
},
};
module_platform_driver(ctucanfd_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Martin Jerabek");
MODULE_DESCRIPTION("CTU CAN FD for platform");

View File

@@ -116,7 +116,7 @@ int can_calc_bittiming(const struct net_device *dev, struct can_bittiming *bt,
can_update_sample_point(btc, sample_point_nominal, tseg / 2,
&tseg1, &tseg2, &sample_point_error);
if (sample_point_error > best_sample_point_error)
if (sample_point_error >= best_sample_point_error)
continue;
best_sample_point_error = sample_point_error;

View File

@@ -221,7 +221,7 @@ int can_rx_offload_irq_offload_fifo(struct can_rx_offload *offload)
}
EXPORT_SYMBOL_GPL(can_rx_offload_irq_offload_fifo);
int can_rx_offload_queue_sorted(struct can_rx_offload *offload,
int can_rx_offload_queue_timestamp(struct can_rx_offload *offload,
struct sk_buff *skb, u32 timestamp)
{
struct can_rx_offload_cb *cb;
@@ -240,7 +240,7 @@ int can_rx_offload_queue_sorted(struct can_rx_offload *offload,
return 0;
}
EXPORT_SYMBOL_GPL(can_rx_offload_queue_sorted);
EXPORT_SYMBOL_GPL(can_rx_offload_queue_timestamp);
unsigned int can_rx_offload_get_echo_skb(struct can_rx_offload *offload,
unsigned int idx, u32 timestamp,
@@ -256,7 +256,7 @@ unsigned int can_rx_offload_get_echo_skb(struct can_rx_offload *offload,
if (!skb)
return 0;
err = can_rx_offload_queue_sorted(offload, skb, timestamp);
err = can_rx_offload_queue_timestamp(offload, skb, timestamp);
if (err) {
stats->rx_errors++;
stats->tx_fifo_errors++;

View File

@@ -723,11 +723,9 @@ static int flexcan_get_berr_counter(const struct net_device *dev,
const struct flexcan_priv *priv = netdev_priv(dev);
int err;
err = pm_runtime_get_sync(priv->dev);
if (err < 0) {
pm_runtime_put_noidle(priv->dev);
err = pm_runtime_resume_and_get(priv->dev);
if (err < 0)
return err;
}
err = __flexcan_get_berr_counter(dev, bec);
@@ -845,7 +843,7 @@ static void flexcan_irq_bus_err(struct net_device *dev, u32 reg_esr)
if (tx_errors)
dev->stats.tx_errors++;
err = can_rx_offload_queue_sorted(&priv->offload, skb, timestamp);
err = can_rx_offload_queue_timestamp(&priv->offload, skb, timestamp);
if (err)
dev->stats.rx_fifo_errors++;
}
@@ -892,7 +890,7 @@ static void flexcan_irq_state(struct net_device *dev, u32 reg_esr)
if (unlikely(new_state == CAN_STATE_BUS_OFF))
can_bus_off(dev);
err = can_rx_offload_queue_sorted(&priv->offload, skb, timestamp);
err = can_rx_offload_queue_timestamp(&priv->offload, skb, timestamp);
if (err)
dev->stats.rx_fifo_errors++;
}
@@ -1700,11 +1698,9 @@ static int flexcan_open(struct net_device *dev)
return -EINVAL;
}
err = pm_runtime_get_sync(priv->dev);
if (err < 0) {
pm_runtime_put_noidle(priv->dev);
err = pm_runtime_resume_and_get(priv->dev);
if (err < 0)
return err;
}
err = open_candev(dev);
if (err)

View File

@@ -464,7 +464,7 @@ static void m_can_receive_skb(struct m_can_classdev *cdev,
struct net_device_stats *stats = &cdev->net->stats;
int err;
err = can_rx_offload_queue_sorted(&cdev->offload, skb,
err = can_rx_offload_queue_timestamp(&cdev->offload, skb,
timestamp);
if (err)
stats->rx_fifo_errors++;

View File

@@ -14,6 +14,8 @@
#include <linux/platform_device.h>
#include <linux/netdevice.h>
#include <linux/can/dev.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/of_platform.h>
#include <sysdev/fsl_soc.h>
#include <linux/clk.h>

View File

@@ -107,7 +107,7 @@ config CAN_TSCAN1
depends on ISA
help
This driver is for Technologic Systems' TSCAN-1 PC104 boards.
http://www.embeddedarm.com/products/board-detail.php?product=TS-CAN1
https://www.embeddedts.com/products/TS-CAN1
The driver supports multiple boards and automatically configures them:
PLD IO base addresses are read from jumpers JP1 and JP2,
IRQ numbers are read from jumpers JP4 and JP5,

View File

@@ -5,10 +5,9 @@
* Copyright 2010 Andre B. Oliveira
*/
/*
* References:
* - Getting started with TS-CAN1, Technologic Systems, Jun 2009
* http://www.embeddedarm.com/documentation/ts-can1-manual.pdf
/* References:
* - Getting started with TS-CAN1, Technologic Systems, Feb 2022
* https://docs.embeddedts.com/TS-CAN1
*/
#include <linux/init.h>

View File

@@ -37,6 +37,12 @@ static const struct mcp251xfd_devtype_data mcp251xfd_devtype_data_mcp2518fd = {
.model = MCP251XFD_MODEL_MCP2518FD,
};
static const struct mcp251xfd_devtype_data mcp251xfd_devtype_data_mcp251863 = {
.quirks = MCP251XFD_QUIRK_CRC_REG | MCP251XFD_QUIRK_CRC_RX |
MCP251XFD_QUIRK_CRC_TX | MCP251XFD_QUIRK_ECC,
.model = MCP251XFD_MODEL_MCP251863,
};
/* Autodetect model, start with CRC enabled. */
static const struct mcp251xfd_devtype_data mcp251xfd_devtype_data_mcp251xfd = {
.quirks = MCP251XFD_QUIRK_CRC_REG | MCP251XFD_QUIRK_CRC_RX |
@@ -75,6 +81,8 @@ static const char *__mcp251xfd_get_model_str(enum mcp251xfd_model model)
return "MCP2517FD";
case MCP251XFD_MODEL_MCP2518FD:
return "MCP2518FD";
case MCP251XFD_MODEL_MCP251863:
return "MCP251863";
case MCP251XFD_MODEL_MCP251XFD:
return "MCP251xFD";
}
@@ -916,7 +924,7 @@ static int mcp251xfd_handle_rxovif(struct mcp251xfd_priv *priv)
cf->can_id |= CAN_ERR_CRTL;
cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
err = can_rx_offload_queue_sorted(&priv->offload, skb, timestamp);
err = can_rx_offload_queue_timestamp(&priv->offload, skb, timestamp);
if (err)
stats->rx_fifo_errors++;
@@ -1021,7 +1029,7 @@ static int mcp251xfd_handle_ivmif(struct mcp251xfd_priv *priv)
return 0;
mcp251xfd_skb_set_timestamp(priv, skb, timestamp);
err = can_rx_offload_queue_sorted(&priv->offload, skb, timestamp);
err = can_rx_offload_queue_timestamp(&priv->offload, skb, timestamp);
if (err)
stats->rx_fifo_errors++;
@@ -1094,7 +1102,7 @@ static int mcp251xfd_handle_cerrif(struct mcp251xfd_priv *priv)
cf->data[7] = bec.rxerr;
}
err = can_rx_offload_queue_sorted(&priv->offload, skb, timestamp);
err = can_rx_offload_queue_timestamp(&priv->offload, skb, timestamp);
if (err)
stats->rx_fifo_errors++;
@@ -1259,7 +1267,8 @@ mcp251xfd_handle_eccif_recover(struct mcp251xfd_priv *priv, u8 nr)
* - for mcp2518fd: offset not 0 or 1
*/
if (chip_tx_tail != tx_tail ||
!(offset == 0 || (offset == 1 && mcp251xfd_is_2518(priv)))) {
!(offset == 0 || (offset == 1 && (mcp251xfd_is_2518FD(priv) ||
mcp251xfd_is_251863(priv))))) {
netdev_err(priv->ndev,
"ECC Error information inconsistent (addr=0x%04x, nr=%d, tx_tail=0x%08x(%d), chip_tx_tail=%d, offset=%d).\n",
addr, nr, tx_ring->tail, tx_tail, chip_tx_tail,
@@ -1697,7 +1706,7 @@ static int mcp251xfd_register_chip_detect(struct mcp251xfd_priv *priv)
else
devtype_data = &mcp251xfd_devtype_data_mcp2517fd;
if (!mcp251xfd_is_251X(priv) &&
if (!mcp251xfd_is_251XFD(priv) &&
priv->devtype_data.model != devtype_data->model) {
netdev_info(ndev,
"Detected %s, but firmware specifies a %s. Fixing up.\n",
@@ -1929,6 +1938,9 @@ static const struct of_device_id mcp251xfd_of_match[] = {
}, {
.compatible = "microchip,mcp2518fd",
.data = &mcp251xfd_devtype_data_mcp2518fd,
}, {
.compatible = "microchip,mcp251863",
.data = &mcp251xfd_devtype_data_mcp251863,
}, {
.compatible = "microchip,mcp251xfd",
.data = &mcp251xfd_devtype_data_mcp251xfd,
@@ -1945,6 +1957,9 @@ static const struct spi_device_id mcp251xfd_id_table[] = {
}, {
.name = "mcp2518fd",
.driver_data = (kernel_ulong_t)&mcp251xfd_devtype_data_mcp2518fd,
}, {
.name = "mcp251863",
.driver_data = (kernel_ulong_t)&mcp251xfd_devtype_data_mcp251863,
}, {
.name = "mcp251xfd",
.driver_data = (kernel_ulong_t)&mcp251xfd_devtype_data_mcp251xfd,

View File

@@ -173,7 +173,7 @@ mcp251xfd_handle_rxif_one(struct mcp251xfd_priv *priv,
}
mcp251xfd_hw_rx_obj_to_skb(priv, hw_rx_obj, skb);
err = can_rx_offload_queue_sorted(&priv->offload, skb, hw_rx_obj->ts);
err = can_rx_offload_queue_timestamp(&priv->offload, skb, hw_rx_obj->ts);
if (err)
stats->rx_fifo_errors++;

View File

@@ -586,7 +586,8 @@ struct mcp251xfd_regs_status {
enum mcp251xfd_model {
MCP251XFD_MODEL_MCP2517FD = 0x2517,
MCP251XFD_MODEL_MCP2518FD = 0x2518,
MCP251XFD_MODEL_MCP251XFD = 0xffff, /* autodetect model */
MCP251XFD_MODEL_MCP251863 = 0x251863,
MCP251XFD_MODEL_MCP251XFD = 0xffffffff, /* autodetect model */
};
struct mcp251xfd_devtype_data {
@@ -659,12 +660,13 @@ struct mcp251xfd_priv {
static inline bool \
mcp251xfd_is_##_model(const struct mcp251xfd_priv *priv) \
{ \
return priv->devtype_data.model == MCP251XFD_MODEL_MCP##_model##FD; \
return priv->devtype_data.model == MCP251XFD_MODEL_MCP##_model; \
}
MCP251XFD_IS(2517);
MCP251XFD_IS(2518);
MCP251XFD_IS(251X);
MCP251XFD_IS(2517FD);
MCP251XFD_IS(2518FD);
MCP251XFD_IS(251863);
MCP251XFD_IS(251XFD);
static inline bool mcp251xfd_is_fd_mode(const struct mcp251xfd_priv *priv)
{

View File

@@ -633,7 +633,7 @@ static int ti_hecc_error(struct net_device *ndev, int int_status,
cf->data[3] = CAN_ERR_PROT_LOC_ACK;
timestamp = hecc_read(priv, HECC_CANLNT);
err = can_rx_offload_queue_sorted(&priv->offload, skb,
err = can_rx_offload_queue_timestamp(&priv->offload, skb,
timestamp);
if (err)
ndev->stats.rx_fifo_errors++;
@@ -668,7 +668,7 @@ static void ti_hecc_change_state(struct net_device *ndev,
}
timestamp = hecc_read(priv, HECC_CANLNT);
err = can_rx_offload_queue_sorted(&priv->offload, skb, timestamp);
err = can_rx_offload_queue_timestamp(&priv->offload, skb, timestamp);
if (err)
ndev->stats.rx_fifo_errors++;
}

View File

@@ -239,7 +239,7 @@ static const struct can_bittiming_const xcan_bittiming_const_canfd = {
};
/* AXI CANFD Data Bittiming constants as per AXI CANFD 1.0 specs */
static struct can_bittiming_const xcan_data_bittiming_const_canfd = {
static const struct can_bittiming_const xcan_data_bittiming_const_canfd = {
.name = DRIVER_NAME,
.tseg1_min = 1,
.tseg1_max = 16,
@@ -265,7 +265,7 @@ static const struct can_bittiming_const xcan_bittiming_const_canfd2 = {
};
/* AXI CANFD 2.0 Data Bittiming constants as per AXI CANFD 2.0 spec */
static struct can_bittiming_const xcan_data_bittiming_const_canfd2 = {
static const struct can_bittiming_const xcan_data_bittiming_const_canfd2 = {
.name = DRIVER_NAME,
.tseg1_min = 1,
.tseg1_max = 32,

View File

@@ -42,8 +42,8 @@ int can_rx_offload_add_manual(struct net_device *dev,
int can_rx_offload_irq_offload_timestamp(struct can_rx_offload *offload,
u64 reg);
int can_rx_offload_irq_offload_fifo(struct can_rx_offload *offload);
int can_rx_offload_queue_sorted(struct can_rx_offload *offload,
struct sk_buff *skb, u32 timestamp);
int can_rx_offload_queue_timestamp(struct can_rx_offload *offload,
struct sk_buff *skb, u32 timestamp);
unsigned int can_rx_offload_get_echo_skb(struct can_rx_offload *offload,
unsigned int idx, u32 timestamp,
unsigned int *frame_len_ptr);