User processes register an address and bit pair for events. If the same
address and bit pair are registered multiple times in the same process,
it can cause undefined behavior when events are enabled/disabled.
When more than one are used, the bit could be turned off by another
event being disabled, while the original event is still enabled.
Prevent undefined behavior by checking the current mm to see if any
event has already been registered for the address and bit pair. Return
EADDRINUSE back to the user process if it's already being used.
Update ftrace self-test to ensure this occurs properly.
Link: https://lkml.kernel.org/r/20230425225107.8525-4-beaub@linux.microsoft.com
Suggested-by: Doug Cook <dcook@linux.microsoft.com>
Signed-off-by: Beau Belgrave <beaub@linux.microsoft.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
The write index indicates which event the data is for and accesses a
per-file array. The index is passed by user processes during write()
calls as the first 4 bytes. Ensure that it cannot be negative by
returning -EINVAL to prevent out of bounds accesses.
Update ftrace self-test to ensure this occurs properly.
Link: https://lkml.kernel.org/r/20230425225107.8525-2-beaub@linux.microsoft.com
Fixes: 7f5a08c79d ("user_events: Add minimal support for trace_event into ftrace")
Reported-by: Doug Cook <dcook@linux.microsoft.com>
Signed-off-by: Beau Belgrave <beaub@linux.microsoft.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Sometimes we use seq_buf to format a string buffer, which
we then pass to printk(). However, in certain situations
the seq_buf string buffer can get too big, exceeding the
PRINTKRB_RECORD_MAX bytes limit, and causing printk() to
truncate the string.
Add a new seq_buf helper. This helper prints the seq_buf
string buffer line by line, using \n as a delimiter,
rather than passing the whole string buffer to printk()
at once.
Link: https://lkml.kernel.org/r/20230415100110.1419872-1-senozhatsky@chromium.org
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Tested-by: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Both print_fields() and print_array() do not handle if dynamic data ends
at the last byte of the payload for both __dyn_loc and __rel_loc field
types. For __rel_loc, the offset was off by 4 bytes, leading to
incorrect strings and data being printed out. In print_array() the
buffer pos was missed from being advanced, which results in the first
payload byte being used as the offset base instead of the field offset.
Advance __rel_loc offset by 4 to ensure correct offset and advance pos
to the field offset to ensure correct data is displayed when printing
arrays. Change >= to > when checking if data is in-bounds, since it's
valid for dynamic data to include the last byte of the payload.
Example outputs for event format:
field:unsigned short common_type; offset:0; size:2; signed:0;
field:unsigned char common_flags; offset:2; size:1; signed:0;
field:unsigned char common_preempt_count; offset:3; size:1; signed:0;
field:int common_pid; offset:4; size:4; signed:1;
field:__rel_loc char text[]; offset:8; size:4; signed:1;
Output before:
tp_rel_loc: text=<OVERFLOW>
Output after:
tp_rel_loc: text=Test
Link: https://lkml.kernel.org/r/20230419214140.4158-3-beaub@linux.microsoft.com
Fixes: 80a76994b2 ("tracing: Add "fields" option to show raw trace event fields")
Reported-by: Doug Cook <dcook@linux.microsoft.com>
Signed-off-by: Beau Belgrave <beaub@linux.microsoft.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Users expect that events can be filtered by the kernel. User events
currently sets all event fields as FILTER_OTHER which limits to binary
filters only. When strings are being used, functionality is reduced.
Use filter_assign_type() to find the most appropriate filter
type for each field in user events to ensure full kernel capabilities.
Link: https://lkml.kernel.org/r/20230419214140.4158-2-beaub@linux.microsoft.com
Signed-off-by: Beau Belgrave <beaub@linux.microsoft.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
The user events was added a bit prematurely, and there were a few kernel
developers that had issues with it. The API also needed a bit of work to
make sure it would be stable. It was decided to make user events "broken"
until this was settled. Now it has a new API that appears to be as stable
as it will be without the use of a crystal ball. It's being used within
Microsoft as is, which means the API has had some testing in real world
use cases. It went through many discussions in the bi-weekly tracing
meetings, and there's been no more comments about updates.
I feel this is good to go.
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Operators want to be able to ensure enough tracepoints exist on the
system for kernel components as well as for user components. Since there
are only up to 64K events, by default allow up to half to be used by
user events.
Add a kernel sysctl parameter (kernel.user_events_max) to set a global
limit that is honored among all groups on the system. This ensures hard
limits can be setup to prevent user processes from consuming all event
IDs on the system.
Link: https://lkml.kernel.org/r/20230328235219.203-12-beaub@linux.microsoft.com
Signed-off-by: Beau Belgrave <beaub@linux.microsoft.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Enablements are now tracked by the lifetime of the task/mm. User
processes need to be able to disable their addresses if tracing is
requested to be turned off. Before unmapping the page would suffice.
However, we now need a stronger contract. Add an ioctl to enable this.
A new flag bit is added, freeing, to user_event_enabler to ensure that
if the event is attempted to be removed while a fault is being handled
that the remove is delayed until after the fault is reattempted.
Link: https://lkml.kernel.org/r/20230328235219.203-6-beaub@linux.microsoft.com
Signed-off-by: Beau Belgrave <beaub@linux.microsoft.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
When events are enabled within the various tracing facilities, such as
ftrace/perf, the event_mutex is held. As events are enabled pages are
accessed. We do not want page faults to occur under this lock. Instead
queue the fault to a workqueue to be handled in a process context safe
way without the lock.
The enable address is marked faulting while the async fault-in occurs.
This ensures that we don't attempt to fault-in more than is necessary.
Once the page has been faulted in, an address write is re-attempted.
If the page couldn't fault-in, then we wait until the next time the
event is enabled to prevent any potential infinite loops.
Link: https://lkml.kernel.org/r/20230328235219.203-5-beaub@linux.microsoft.com
Signed-off-by: Beau Belgrave <beaub@linux.microsoft.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
As part of the discussions for user_events aligned with user space
tracers, it was determined that user programs should register a aligned
value to set or clear a bit when an event becomes enabled. Currently a
shared page is being used that requires mmap(). Remove the shared page
implementation and move to a user registered address implementation.
In this new model during the event registration from user programs 3 new
values are specified. The first is the address to update when the event
is either enabled or disabled. The second is the bit to set/clear to
reflect the event being enabled. The third is the size of the value at
the specified address.
This allows for a local 32/64-bit value in user programs to support
both kernel and user tracers. As an example, setting bit 31 for kernel
tracers when the event becomes enabled allows for user tracers to use
the other bits for ref counts or other flags. The kernel side updates
the bit atomically, user programs need to also update these values
atomically.
User provided addresses must be aligned on a natural boundary, this
allows for single page checking and prevents odd behaviors such as a
enable value straddling 2 pages instead of a single page. Currently
page faults are only logged, future patches will handle these.
Link: https://lkml.kernel.org/r/20230328235219.203-4-beaub@linux.microsoft.com
Suggested-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Beau Belgrave <beaub@linux.microsoft.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
During tracefs discussions it was decided instead of requiring a mapping
within a user-process to track the lifetime of memory descriptors we
should hook the appropriate calls. Do this by adding the minimal stubs
required for task fork, exec, and exit. Currently this is just a NOP.
Future patches will implement these calls fully.
Link: https://lkml.kernel.org/r/20230328235219.203-3-beaub@linux.microsoft.com
Suggested-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Beau Belgrave <beaub@linux.microsoft.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
The canonical location for the tracefs filesystem is at /sys/kernel/tracing.
But, from Documentation/trace/ftrace.rst:
Before 4.1, all ftrace tracing control files were within the debugfs
file system, which is typically located at /sys/kernel/debug/tracing.
For backward compatibility, when mounting the debugfs file system,
the tracefs file system will be automatically mounted at:
/sys/kernel/debug/tracing
scripts/leaking_addresses.pl only skipped this older debugfs path, so
let's add the canonical path as well.
Link: https://lkml.kernel.org/r/20230313211746.1541525-2-zwisler@kernel.org
Cc: "Tobin C. Harding" <me@tobin.cc>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Shuah Khan <shuah@kernel.org>
Acked-by: Tycho Andersen <tycho@tycho.pizza>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Ross Zwisler <zwisler@google.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
The canonical location for the tracefs filesystem is at /sys/kernel/tracing.
But, from Documentation/trace/ftrace.rst:
Before 4.1, all ftrace tracing control files were within the debugfs
file system, which is typically located at /sys/kernel/debug/tracing.
For backward compatibility, when mounting the debugfs file system,
the tracefs file system will be automatically mounted at:
/sys/kernel/debug/tracing
A few spots in tools/testing/selftests still refer to this older debugfs
path, so let's update them to avoid confusion.
Link: https://lkml.kernel.org/r/20230313211746.1541525-1-zwisler@kernel.org
Cc: "Tobin C. Harding" <me@tobin.cc>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Tycho Andersen <tycho@tycho.pizza>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Reviewed-by: Mukesh Ojha <quic_mojha@quicinc.com>
Signed-off-by: Ross Zwisler <zwisler@google.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
When debugging a crash that appears to be related to ftrace, but not for
sure, it is useful to know if a function was ever enabled by ftrace or
not. It could be that a BPF program was attached to it, or possibly a live
patch.
We are having crashes in the field where this information is not always
known. But having ftrace set a flag if a function has ever been attached
since boot up helps tremendously in trying to know if a crash had to do
with something using ftrace.
For analyzing crashes, the use of a kdump image can have access to the
flags. When looking at issues where the kernel did not panic, the
touched_functions file can simply be used.
Link: https://lore.kernel.org/linux-trace-kernel/20230124095653.6fd1640e@gandalf.local.home
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Chris Li <chriscli@google.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Use try_cmpxchg instead of cmpxchg (*ptr, old, new) == old.
x86 CMPXCHG instruction returns success in ZF flag, so this change
saves a compare after cmpxchg (and related move instruction in
front of cmpxchg).
Also, try_cmpxchg implicitly assigns old *ptr value to "old" when cmpxchg
fails. There is no need to re-read the value in the loop.
No functional change intended.
Link: https://lkml.kernel.org/r/20230305155532.5549-4-ubizjak@gmail.com
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Acked-by: Mukesh Ojha <quic_mojha@quicinc.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
The ftrace selftest code has a trace_direct_tramp() function which it
uses as a direct call trampoline. This happens to work on x86, since the
direct call's return address is in the usual place, and can be returned
to via a RET, but in general the calling convention for direct calls is
different from regular function calls, and requires a trampoline written
in assembly.
On s390, regular function calls place the return address in %r14, and an
ftrace patch-site in an instrumented function places the trampoline's
return address (which is within the instrumented function) in %r0,
preserving the original %r14 value in-place. As a regular C function
will return to the address in %r14, using a C function as the trampoline
results in the trampoline returning to the caller of the instrumented
function, skipping the body of the instrumented function.
Note that the s390 issue is not detcted by the ftrace selftest code, as
the instrumented function is trivial, and returning back into the caller
happens to be equivalent.
On arm64, regular function calls place the return address in x30, and
an ftrace patch-site in an instrumented function saves this into r9
and places the trampoline's return address (within the instrumented
function) in x30. A regular C function will return to the address in
x30, but will not restore x9 into x30. Consequently, using a C function
as the trampoline results in returning to the trampoline's return
address having corrupted x30, such that when the instrumented function
returns, it will return back into itself.
To avoid future issues in this area, remove the trace_direct_tramp()
function, and require that each architecture with direct calls provides
a stub trampoline, named ftrace_stub_direct_tramp. This can be written
to handle the architecture's trampoline calling convention, and in
future could be used elsewhere (e.g. in the ftrace ops sample, to
measure the overhead of direct calls), so we may as well always build it
in.
Link: https://lkml.kernel.org/r/20230321140424.345218-8-revest@chromium.org
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Li Huafei <lihuafei1@huawei.com>
Cc: Xu Kuohai <xukuohai@huawei.com>
Signed-off-by: Florent Revest <revest@chromium.org>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Direct called trampolines can be called in two ways:
- either from the ftrace callsite. In this case, they do not access any
struct ftrace_regs nor pt_regs
- Or, if a ftrace ops is also attached, from the end of a ftrace
trampoline. In this case, the call_direct_funcs ops is in charge of
setting the direct call trampoline's address in a struct ftrace_regs
Since:
commit 9705bc7096 ("ftrace: pass fregs to arch_ftrace_set_direct_caller()")
The later case no longer requires a full pt_regs. It only needs a struct
ftrace_regs so DIRECT_CALLS can work with both WITH_ARGS or WITH_REGS.
With architectures like arm64 already abandoning WITH_REGS in favor of
WITH_ARGS, it's important to have DIRECT_CALLS work WITH_ARGS only.
Link: https://lkml.kernel.org/r/20230321140424.345218-7-revest@chromium.org
Signed-off-by: Florent Revest <revest@chromium.org>
Co-developed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
All direct calls are now registered using the register_ftrace_direct API
so each ops can jump to only one direct-called trampoline.
By storing the direct called trampoline address directly in the ops we
can save one hashmap lookup in the direct call ops and implement arm64
direct calls on top of call ops.
Link: https://lkml.kernel.org/r/20230321140424.345218-6-revest@chromium.org
Signed-off-by: Florent Revest <revest@chromium.org>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
A common pattern when using the ftrace_direct_multi API is to unregister
the ops and also immediately free its filter. We've noticed it's very
easy for users to miss calling ftrace_free_filter().
This adds a "free_filters" argument to unregister_ftrace_direct_multi()
to both remind the user they should free filters and also to make their
life easier.
Link: https://lkml.kernel.org/r/20230321140424.345218-2-revest@chromium.org
Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Florent Revest <revest@chromium.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Pull tracing fixes from Steven Rostedt:
- Fix setting affinity of hwlat threads in containers
Using sched_set_affinity() has unwanted side effects when being
called within a container. Use set_cpus_allowed_ptr() instead
- Fix per cpu thread management of the hwlat tracer:
- Do not start per_cpu threads if one is already running for the CPU
- When starting per_cpu threads, do not clear the kthread variable
as it may already be set to running per cpu threads
- Fix return value for test_gen_kprobe_cmd()
On error the return value was overwritten by being set to the result
of the call from kprobe_event_delete(), which would likely succeed,
and thus have the function return success
- Fix splice() reads from the trace file that was broken by commit
36e2c7421f ("fs: don't allow splice read/write without explicit
ops")
- Remove obsolete and confusing comment in ring_buffer.c
The original design of the ring buffer used struct page flags for
tricks to optimize, which was shortly removed due to them being
tricks. But a comment for those tricks remained
- Set local functions and variables to static
* tag 'trace-v6.3-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
tracing/hwlat: Replace sched_setaffinity with set_cpus_allowed_ptr
ring-buffer: remove obsolete comment for free_buffer_page()
tracing: Make splice_read available again
ftrace: Set direct_ops storage-class-specifier to static
trace/hwlat: Do not start per-cpu thread if it is already running
trace/hwlat: Do not wipe the contents of per-cpu thread data
tracing/osnoise: set several trace_osnoise.c variables storage-class-specifier to static
tracing: Fix wrong return in kprobe_event_gen_test.c
There is a problem with the behavior of hwlat in a container,
resulting in incorrect output. A warning message is generated:
"cpumask changed while in round-robin mode, switching to mode none",
and the tracing_cpumask is ignored. This issue arises because
the kernel thread, hwlatd, is not a part of the container, and
the function sched_setaffinity is unable to locate it using its PID.
Additionally, the task_struct of hwlatd is already known.
Ultimately, the function set_cpus_allowed_ptr achieves
the same outcome as sched_setaffinity, but employs task_struct
instead of PID.
Test case:
# cd /sys/kernel/tracing
# echo 0 > tracing_on
# echo round-robin > hwlat_detector/mode
# echo hwlat > current_tracer
# unshare --fork --pid bash -c 'echo 1 > tracing_on'
# dmesg -c
Actual behavior:
[573502.809060] hwlat_detector: cpumask changed while in round-robin mode, switching to mode none
Link: https://lore.kernel.org/linux-trace-kernel/20230316144535.1004952-1-costa.shul@redhat.com
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Fixes: 0330f7aa8e ("tracing: Have hwlat trace migrate across tracing_cpumask CPUs")
Signed-off-by: Costa Shulyupin <costa.shul@redhat.com>
Acked-by: Daniel Bristot de Oliveira <bristot@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Since the commit 36e2c7421f ("fs: don't allow splice read/write
without explicit ops") is applied to the kernel, splice() and
sendfile() calls on the trace file (/sys/kernel/debug/tracing
/trace) return EINVAL.
This patch restores these system calls by initializing splice_read
in file_operations of the trace file. This patch only enables such
functionalities for the read case.
Link: https://lore.kernel.org/linux-trace-kernel/20230314013707.28814-1-sfoon.kim@samsung.com
Cc: stable@vger.kernel.org
Fixes: 36e2c7421f ("fs: don't allow splice read/write without explicit ops")
Signed-off-by: Sung-hun Kim <sfoon.kim@samsung.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Pull tty/serial driver fixes from Greg KH:
"Here are some small tty and serial driver fixes for 6.3-rc3 to resolve
some reported issues.
They include:
- 8250 driver Kconfig issue pointed out by you that showed up in -rc1
- qcom-geni serial driver fixes
- various 8250 driver fixes for reported problems
- fsl_lpuart driver fixes
- serdev fix for regression in -rc1
- vt.c bugfix
All have been in linux-next for over a week with no reported problems"
* tag 'tty-6.3-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty:
tty: vt: protect KD_FONT_OP_GET_TALL from unbound access
serial: qcom-geni: drop bogus uart_write_wakeup()
serial: qcom-geni: fix mapping of empty DMA buffer
serial: qcom-geni: fix DMA mapping leak on shutdown
serial: qcom-geni: fix console shutdown hang
serdev: Set fwnode for serdev devices
tty: serial: fsl_lpuart: fix race on RX DMA shutdown
serial: 8250_pci1xxxx: Disable SERIAL_8250_PCI1XXXX config by default
serial: 8250_fsl: fix handle_irq locking
serial: 8250_em: Fix UART port type
serial: 8250: ASPEED_VUART: select REGMAP instead of depending on it
tty: serial: fsl_lpuart: skip waiting for transmission complete when UARTCTRL_SBK is asserted
Revert "tty: serial: fsl_lpuart: adjust SERIAL_FSL_LPUART_CONSOLE config dependency"